Methane sources and sinks in continental sedimentary systems: New insights from paired clumped isotopologues 13CH$_3$D and 12CH$_2$D$_2$

Thomas Giunta a,*, Edward D. Young b, Oliver Warr a, Issaku Kohl b, Jeanine L. Ash b,1, Anna Martini c, Scott O.C. Mundle a,2, Douglas Rumble d, Ileana Pérez-Rodríguez e,f, Mark Wasley d, Douglas E. LaRowe e, Alexis Gilbert g, Barbara Sherwood Lollar a

a Department of Earth Sciences, University of Toronto, Canada
b Department of Earth, Planetary and Space Sciences, University of California Los Angeles, USA
c Department of Geology and Environmental Studies, Amherst College, USA
d Geophysical Laboratory, Carnegie Institution of Washington, USA
e Department of Earth Sciences, University of Southern California, USA
f Earth and Environmental Science, University of Pennsylvania, USA
g Earth-Life Science Institute, Tokyo Institute of Technology, Japan

Received 17 April 2018; accepted in revised form 27 October 2018; Available online 8 November 2018

Abstract

Stable isotope compositions of methane (δ^{13}C and δ^D) and of short-chain alkanes are commonly used to trace the origin and fate of carbon in the continental crust. In continental sedimentary systems, methane is typically produced through thermogenic cracking of organic matter and/or through microbial methanogenesis. However, secondary processes such as mixing, migration or biodegradation can alter the original isotopic and composition of the gas, making the identification and the quantification of primary sources challenging. The recently resolved methane ‘clumped’ isotopologues 13CH$_3$D and 12CH$_2$D$_2$ are unique indicators of whether methane is at thermodynamic isotopic equilibrium or not, thereby providing insights into formation temperatures and/or into kinetic processes controlling methane generation processes, including microbial methanogenesis.

In this study, we report the first systematic use of methane 13CH$_3$D and 12CH$_2$D$_2$ in the context of continental sedimentary basins. We investigated sedimentary formations from the Southwest Ontario and Michigan Basins, where the presence of both microbial and thermogenic methane was previously proposed. Methane from the Silurian strata coexist with highly saline brines, and clumped isotopologues exhibit large offsets from thermodynamic equilibrium, with 12CH$_2$D$_2$ values as low as $-23\%e$. Together with conventional δ^{13}C and δ^D values, the variability in 13CH$_3$D and 12CH$_2$D$_2$ to first order reflects a mixing relationship between near-equilibrated thermogenic methane similar to gases from deeper Cambrian and Middle Ordovician units, and a source characterized by a substantial departure from equilibrium that could be associated with microbial methanogenesis. In contrast, methane from the Devonian-age Antrim Shale, associated with less saline porewaters, reveals 13CH$_3$D and 12CH$_2$D$_2$ values that are approaching low temperature thermodynamic equilibrium. While microbial
methanogenesis remains an important contributor to the methane budget in the Antrim Shale, it is suggested that Anaerobic Oxidation of Methane (AOM) could contribute to reprocessing methane isotopologues, yielding Δ\(^{13}\)CH\(_3\)D and Δ\(^{12}\)CH\(_2\)D\(_2\) signatures approaching thermodynamic equilibrium. © 2018 Elsevier Ltd. All rights reserved.

Keywords: Methane; Clumped isotopologues; Sedimentary basins; Microbial methanogenesis; Anaerobic oxidation

1. INTRODUCTION

Unraveling methane sources and sinks is key to understanding carbon cycling over geological timescales. Although it has a relatively short residence time in the atmosphere, methane is an important greenhouse gas. By contrast, methane in the continental crust (e.g. in sedimentary systems or within crystalline rocks) has longer residence times due to the reducing nature of these environments as well as limited exchange with other reservoirs. In such crustal systems, three major methanogenesis pathways are considered: (i) ‘thermogenic methane’ resulting from the thermostatic cracking of longer chain hydrocarbons and organic matter (often associated with oil production in sedimentary basins), (ii) ‘microbial methane’ which can result from different type of metabolisms (e.g. CO\(_2\) reduction, acetate fermentation), and in rare cases (iii) ‘abiogenic methane’ resulting from Sabatier-type reactions. The identification of these different pools and the resolution of potential mixing between them is traditionally explored using bulk stable isotopic compositions (\(\delta^{13}\)C and \(\delta^D\)) of the methane molecule, combined with the gas water ratio C\(_2\)/C\(_2\)+ (e.g. Bernard et al., 1976; Schoell, 1988; Sherwood Lollar et al., 1993, 1994; Martini et al., 1996; Whiticar, 1999). Characterization of subsurface methane is strongly constrained by our ability to define these possible endmembers. Isotope ratios are key arbiters in this endeavor. In nature, the variability of reaction pathways, temperatures and isotopic compositions of substrates or chemical precursors can produce a wide spectrum of bulk methane isotopic compositions that can result in overlap in isotope space between different endmembers, making identification of the provenance of the methane challenging (e.g. Martini et al., 1998; Horita and Berndt, 1999; Etope and Sherwood Lollar, 2013; Vinson et al., 2017).

Recent advances in mass spectrometry have allowed the measurement of multiply substituted clumped isotopologues (i.e. molecules with two or more heavy isotopes). This novel approach allows the investigation of isotope bond ordering in a molecule, which at thermodynamic equilibrium depends on the formation temperature of the molecule. For most molecules, the likelihood to produce a clumped, or multiply-substituted, isotopologue is enhanced with the formation temperature of the molecule. The measurement of multiply substituted clumped isotopologues, the more abundant of multiply substituted mass-18 clumped isotopologues of methane. The first application to natural samples by Stolper et al. (2014b) analyzed a series of gas samples from different sedimentary systems. While some of their samples were convincingly of thermogenic origin and others presumably affected by microbial activity, they suggested overall reasonably good agreement between temperatures calculated based on the relative abundance of \(^{13}\)CH\(_3\)D with those occurring within the basin, demonstrating the role \(^{13}\)CH\(_3\)D can play in determining formation temperature of methane within natural systems. Such good agreement between clumped-based temperatures and environmental temperatures was later supported by Stolper et al. (2015) in a detailed study of gases from the Antrim Shale (Michigan Basin), by Wang et al. (2015) for gas samples from sedimentary environments (Powder River Basin, North Cascadia margin) and from Precambrian cratonic rocks which are considered abiogenic in origin (Sherwood Lollar et al., 2002), as well as by Douglas et al. (2016) in Arctic marine sediments. At the same time, both Stolper et al. (2015) and Wang et al. (2015) observed that laboratory methanogenic cultures or natural environments known to host methanogenic organisms, can produce methane with unrealistically higher clumped-based temperatures, and even in some cases, clear disequilibrium signatures (occurring when the abundance of a clumped isotopologue is lower than the stochastic distribution). These discrepancies between clumped-based temperatures and expected environmental temperatures were also correlated to large D/H disequilibrium between the methane and the water in which it was formed (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Gruen et al., 2018). The potential for such large disequilibrium in some samples revealed a fundamental aspect of isotope bond (re-)ordering: in certain cases, methane is formed under thermodynamic equilibrium and the relative distribution of its isotopologues can be predicted and interpreted as an equilibrium temperature; in other cases, methane formation is controlled by kinetic effects yielding a distribution of isotopologues outside of equilibrium. This distinction between equilibrium and disequilibrium was also highlighted by Douglas et al. (2016) who observed a wide variability of clumped isotopologue signatures in a collection of gas seeps from Alaskan lakes, ranging from apparently thermogenic and equilibrated methane, to dramatically disequilibrated methane likely originating from methanogenic organisms, with many samples possibly resulting from mixing between these two ‘pools’.

Nonetheless, the expression of such disequilibrium where microbial methanogenesis occurs is not always...
We investigated 13CH3D and 12CH2D2 in natural gas samples and mixing processes where disequilibrium is indicated. Temperatures, and alternatively, sensitive indicators of kinetic irreversible formation temperatures of methane in cases where this novel dimension has the potential to provide unambiguous formation temperatures of methane over geological timescales. The concept of a variable degree of reversibility was similarly put forward by Wang et al. (2015), who also proposed that methanogens in nature could produce a wide spectrum of clumped signatures, from disequilibrium to (near-)equilibrium, as a function of available free energy. Despite evidence for reversibility of the key enzyme involved in the methanogenesis pathway (Scheller et al., 2010), it is important to note that such near-equilibrium microbial methane has yet to be replicated under controlled (laboratory) conditions.

In the present study, we use the resolved relative concentrations of two rare mass-18 isotopologues, 12CH2D2 and 13CH3D, as a sensitive indicator of the degree of thermodynamic equilibration of methane gas. The Matsuda-type large radius high-resolution mass spectrometer at UCLA has a mass resolving power (> 40,000) that allows the direct measurement of both 13CH3D and 12CH2D2. The latter is another mass-18 isotopologue of methane with extremely low abundance, typically ~0.1 ppm (Young et al., 2016). This novel dimension has the potential to provide unambiguous formation temperatures of methane in cases where both clumped isotopologue systems yield consistent temperatures, and alternatively, sensitive indicators of kinetic and mixing processes where disequilibrium is indicated. We investigated 13CH3D and 12CH2D2 in natural gas samples from sedimentary strata of Cambrian, Ordovician and Silurian ages in the Southwest Ontario Basin (Canada), and from Silurian and Devonian age strata in the Michigan Basin (USA). The choice of these two geological settings is relevant for a first application of the mass-18 isotopologues in continental sedimentary systems, because both systems are thought to host significant volumes of microbially derived methane (though under very different salinity regimes) in addition to thermogenic gases (Sherwood Lollar et al., 1993; Martini et al., 1996, 1998, 2003; Clark et al., 2015; Stolper et al., 2015). Furthermore, although Southwest Ontario Basin has been extensively explored and exploited for its hydrocarbon resources, questions remain with respect to the apparent low thermal maturity of the rocks (Barker and Pollock, 1984; Sherwood Lollar et al., 1994) and the significant production of light hydrocarbon gases (C1, C2, C3, . .) implying more mature hydrocarbon generation, giving us an opportunity to provide additional constraints on the thermal history of this sedimentary system.

2. GEOLOGICAL AND GEOCHEMICAL BACKGROUNDS

2.1. Southwest Ontario and Michigan Basins

The Southwest Ontario Basin is a broad sedimentary platform that was deposited during intermittent marine transgression occurring from late Cambrian to Devonian era (Brigham, 1971; Johnson et al., 1992). The sedimentary succession lies on the Algonquin Arch, a Precambrian topographic high trending northeast-southwest, and separating two areas of major subsidence: the Michigan Basin to the northwest and the Appalachian Basin to the southeast (Fig. 1). The Algonquin Arch was formed during the late Precambrian and was occasionally reactivated during Paleozoic (Sanford et al., 1985). Southwest Ontario strata overlap to the north against the Precambrian basement and are rather flat-lying on the axis of the arch, with a total thickness of approximately 850 m. In Southwest Ontario, the basal Cambrian unit, deposited on the Precambrian basement, has been extensively eroded during arch rejuvenation in the Early Paleozoic, explaining its absence from the sedimentary sequence in parts of Southwest Ontario. Cambrian strata consist of sandstone and dolomite, and can contain hydrocarbons (usually found in dolomitic pinchouts and in fault traps). Middle Ordovician strata overlie the Cambrian strata where it is present, and otherwise lie directly on the Precambrian basement. They are composed by two distinct limestone groups, the Black River group and the Trenton Group, the latter one being capped by the Upper Ordovician shale. These two groups host post-depositional hydrothermal dolomite mineralized adjacent to faults (Trevail et al., 2004) that extend from the Precambrian basement (Sanford et al., 1985; Carter et al., 1996). The timing for this hydrothermal fluid circulation is still debated and has been proposed to be of Silurian age according to Coniglio et al., (1994) (based on fluid inclusion thermometry) or of late Ordovician age according to Davies and Smith (2006) (based on SAG structures). In the Middle Ordovician limestones, the hydrothermal dolomite mineralization is thought to have increased local porosity and to serve as the primary reservoir for hydrocarbons (Davies and Smith, 2006). Above the Upper Ordovician shale, the Silurian strata consist of alternating dolostone and shale, with evaporitic units in the Upper Silurian. Hydrocarbons are also found in Silurian strata, with reservoirs resulting from permeability pinchouts. Lastly, the Devonian succession consists of interbedded dolostone, shale and limestone, with major oil and gas reservoirs found in the limestone units.

Due to their location on the topographic high of the Algonquin Arch, Southwest Ontario strata have been in a relatively moderate to low thermal regime. Based on con-
odont and acritarch alteration indices. Legall et al. (1981) distinguished two thermal facies in Paleozoic sections from Southwest Ontario. The first facies was identified from the top of the Devonian group down to the Trenton Group in Middle Ordovician strata and indicated maximum burial temperature of only 60°C. The second facies was identified from the Middle Ordovician to the base of the Paleozoic section and indicated a maximum burial temperature ranging between 60 and 90°C. In terms of hydrocarbon generation, these temperatures are considered to be immature to moderately mature (Legall et al., 1981; Obermajer et al., 1996). These apparently low burial temperatures contrast however with homogenization temperatures calculated from hydrothermal dolomite fluid inclusions which reach up to 220°C in the Middle Ordovician units (Coniglio et al., 1994) and up to 130°C in the Silurian units (Haeri-Ardakani et al., 2012). Resolving the thermal history of the basin has been a long-standing challenge.

By contrast to Southwest Ontario, marine incursions in the Michigan Basin, where much greater subsidence occurred, have accumulated up to 4500 m of sediments in the central part of the Basin (Dorr and Eschman, 1970). The Michigan Basin is composed of sediments ranging from Cambrian to Pennsylvanian-age, and contains a thick succession of Devonian sediments that include the organic-rich Antrim Shale. The Antrim Shale mostly consists of black shales interbedded with gray and green shales, as well as carbonate units (Gutschick and Sandberg, 1991). On the northern and the western margins of the Michigan Basin where it subcrops below glacial deposits, the Antrim Shale has accumulated natural gas of economic importance (Martini et al., 1996).

2.2. Gas and water geochemistry

Both Southwest Ontario and Michigan Basins contain light hydrocarbons (C_1, C_2, C_3, ...), of which methane is the major component (up to 90%). In Cambrian and Middle Ordovician strata from Southwest Ontario, investigations of carbon and hydrogen isotopic composition of light hydrocarbons (13C/12C and D/H), suggests that these
3. MATERIAL AND METHODS

3.1. Gas sample collection

We collected a series (n = 10) of gas samples from Cambrian, Middle Ordovician and Middle Silurian strata in Southwest Ontario. In the Michigan Basin, we collected gas samples from the Devonian Antrim Shale (n = 4), as well as two samples from other Devonian formations (Dundee and Berea), and three samples from the Niagaran Silurian formation which is stratigraphically equivalent to the Silurian formation (Guelph) sampled in Southwest Ontario. In the Michigan Basin, we sampled gases from the Antrim Shale, as well as Devonian samples. All gases were sampled from economic gas wells and are summarized in Table 1, together with their locations and their geological formations.

In Southwest Ontario, samples for bulk isotope analyses (δ13C and δD) and gas composition analyses (C1, C2, ...), were collected in pre-evacuated 160 mL glass vials fixed with HgCl2 and sealed with blue butyl rubber stoppers after the method of Ward et al. (2004). Plastic tubing was connected to the wellhead and used to fill a large reservoir that can be sub-sampled. Prior to collecting the sample, gas was allowed to flow for approximately 10 min in order to flush out the reservoir and ensure a representative sampling. Gas was then sampled from the reservoir with a syringe and injected into the pre-evacuated vial. Some of the wells in Southwest Ontario were also sampled for mass-18 methane isotopologue measurements. For those, gases were collected in refrigeration-grade copper tubes (60 cm-long, 10 mm diameter), using the procedure developed and well-establish for noble gas and methane sampling (Sherwood Lollar and Ballentine, 2009). Typically, in order to sample several replicates, copper tubes are connected in series via plastic tubing connected to the wellhead. Here too the gas was allowed to flush for about 10 minutes before sampling to ensure a representative sample. Each copper tube is then successively crimped at both ends to ensure cold welding. Samples from the Michigan Basin also collected in copper tubes, using the same procedure as described above. For those, in addition to gas samples, water samples from the wellhead were also collected in order to measure water isotopic composition, (δ18O and δD) as well as major chemistry. Water samples were not available when Southwest Ontario wells were sampled.

3.2. Gas composition measurement

Gas composition analyses were performed at the Stable Isotope Laboratory at the University of Toronto following methods presented by Ward et al. (2004) and Sherwood Lollar et al. (2006). Light hydrocarbons CH4, C2H6, C3H8 and C4H10 were measured on a Varian 3400 gas chromatograph equipped with a flame ionization detector (FID). Light hydrocarbons were separated on a J&W Scientific GS-Q column (30 m x 0.32 mm ID) with helium as carrier gas and temperature program following: 2.5 min at 60 °C then increasing to 120 °C at 5 °C/min. All analyses were run in triplicate and the reproducibility was ±5%.
3.3. Methane isotopologues \(^{12}\text{CH}_4\), \(^{13}\text{CH}_4\), \(^{12}\text{CH}_2\text{D}_2\), \(^{13}\text{CH}_2\text{D}_2\) and \(^{12}\text{CH}_3\text{D}\) measurements

Singly and doubly-substituted isotopologues of methane are measured on the Panorama, a prototype high resolution gas-source mass spectrometry developed by Nu Instruments at UCLA. The bulk carbon and hydrogen stable isotope ratios are reported versus international standards (V-PDB and SMOW, respectively), and expressed in permil using the classic delta notation such as:

\[
\delta^{13}C = \left(\frac{^{13}\text{C}/^{12}\text{C}}{^{13}\text{C}/^{12}\text{C}}_{\text{VPDB}} - 1 \right) \times 1000 \tag{1}
\]

and

\[
\delta D = \left(\frac{D/H}{D/H}_{\text{VPDB}} - 1 \right) \times 1000 \tag{2}
\]

Mass-18 isotopologue compositions are reported versus a stochastic distribution (Douglas et al., 2017 and reference therein), theoretically obtained at infinite temperature, and expressed in permil using the capital delta notation such as:

\[
\Delta^{13}\text{CH}_3\text{D} = \left(\frac{^{13}\text{CH}_3\text{D}/^{12}\text{CH}_4}{^{13}\text{CH}_3\text{D}/^{12}\text{CH}_4}_\text{sample} - 1 \right) \times 1000 \tag{3}
\]

and

\[
\Delta^{12}\text{CH}_2\text{D}_2 = \left(\frac{^{12}\text{CH}_2\text{D}_2/^{13}\text{CH}_4}{^{12}\text{CH}_2\text{D}_2/^{13}\text{CH}_4}_\text{sample} - 1 \right) \times 1000 \tag{4}
\]

The relationship between \(\Delta^{13}\text{CH}_3\text{D}\) and \(\Delta^{12}\text{CH}_2\text{D}_2\) and temperature can be predicted through ab initio calculations (e.g. Ma et al., 2008; Webb and Miller, 2014; Liu and Liu, 2016). In this study, we used the recent expressions proposed by Young et al., (2016, 2017):

\[
\Delta^{13}\text{CH}_3\text{D}(T) \approx 1000\ln\left(1 + 0.0355502/T - 433.038/T^2 + 1270210.0/T^3 - 5.94804 \times 10^9/T^4 + 1.196630 \times 10^{11}/T^5 - 9.0723 \times 10^{12}/T^6\right) \tag{5}
\]

and

\[
\Delta^{12}\text{CH}_2\text{D}_2(T) \approx 1000\ln\left(1 + 0.183798/T - 785.483/T^2 + 1056280.0/T^3 + 9.37307 \times 10^7/T^4 - 8.919480 \times 10^{10}/T^5 + 9.901730 \times 10^{12}/T^6\right) \tag{6}
\]

where \(T\) is in Kelvin. The differences between the different computational methods to predict relationship between \(\Delta\) values and temperatures are less than the analytical uncertainties (Webb and Miller, 2014; Liu and Liu, 2016, Young et al., 2017). Accordingly, when methane is formed at thermodynamic equilibrium, \(\Delta^{13}\text{CH}_3\text{D}\) and \(\Delta^{12}\text{CH}_2\text{D}_2\) can only exhibit positive values that approach 0‰ at high temperatures (>1000 K).

Methods for sample purification and isotope ratio measurements are detailed by Young et al. (2016, 2017) and briefly summarized here. Prior to measurement of isotopologues, methane is purified on a vacuum line interfaced with a gas chromatograph (GC). In this study, copper tubes containing samples are mounted with a tube-piercer on the vacuum-line. The vacuum-line, including the piercer is briefly summarized here. Prior to measurement of isotopologues, methane is purified on a vacuum line interfaced with a gas chromatograph (GC). In this study, copper tubes containing samples are mounted with a tube-piercer on the vacuum-line. The vacuum-line, including the piercer is pumped with a diaphragm rough pump, then with a turbo-molecular pump to a vacuum of 3 \(\times 10^{-3}\) mbar or better. The copper tube is then pierced and the gas transferred into a liquid nitrogen trap filled with silica-gel. Helium car-
Table 1
Gas samples collected and analyzed for their isotopic compositions. Errors (1σ) are ±0.1‰ for methane δ13C and δD respectively, ±0.3‰ for Δ13CH3D, ±0.3‰ for Δ13CH2D2, ±1‰ for ethane and propane δ13C. nm = non measured. *State Charlton C4-31 was contaminated with air during sampling.

<table>
<thead>
<tr>
<th>Well name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Formation</th>
<th>Age</th>
<th>Methane (C1) δ13C</th>
<th>δD</th>
<th>Δ13CH3D</th>
<th>Δ13CH2D2</th>
<th>Ethane (C2) δ13C</th>
<th>δD</th>
<th>Δ13CD3</th>
<th>Δ13CD2</th>
<th>Propane (C3) δ13C</th>
<th>δD</th>
<th>Δ13CD3</th>
<th>Δ13CD2</th>
<th>iC4</th>
<th>nC4</th>
<th>CO2 δ13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwest Ontario</td>
<td></td>
</tr>
<tr>
<td>Ram No. 33</td>
<td>42.70682</td>
<td>-82.34145</td>
<td>Guelph Mid. Silurian</td>
<td>85.1</td>
<td>-54.3</td>
<td>261</td>
<td>1.66</td>
<td>-20.17</td>
<td>5.5</td>
<td>35.1</td>
<td>2.8</td>
<td>-28.6</td>
<td>1.1</td>
<td>0.7</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesa Et Al Bemore No.1</td>
<td>43.87366</td>
<td>-81.46787</td>
<td>Guelph Mid. Silurian</td>
<td>81.4</td>
<td>-49.3</td>
<td>259</td>
<td>2.50</td>
<td>-14.65</td>
<td>5.1</td>
<td>37.1</td>
<td>2.1</td>
<td>-30.7</td>
<td>1.5</td>
<td>0.4</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearwood et al #12</td>
<td>43.57030</td>
<td>-81.49271</td>
<td>Guelph Mid. Silurian</td>
<td>78.9</td>
<td>-46.9</td>
<td>227</td>
<td>2.99</td>
<td>1.03</td>
<td>7.3</td>
<td>36.3</td>
<td>3.4</td>
<td>-32.5</td>
<td>0.7</td>
<td>0.8</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOG #6</td>
<td>42.86167</td>
<td>-80.38750</td>
<td>Guelph Mid. Silurian</td>
<td>79.9</td>
<td>-47.4</td>
<td>281</td>
<td>3.39</td>
<td>-3.90</td>
<td>7.5</td>
<td>39.9</td>
<td>2.9</td>
<td>-34.2</td>
<td>0.2</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ram/BP 4</td>
<td>42.27138</td>
<td>-82.13437</td>
<td>Trenton Mid. Ordovician</td>
<td>83.8</td>
<td>-41.4</td>
<td>199</td>
<td>2.96</td>
<td>9.07</td>
<td>6.3</td>
<td>36.4</td>
<td>2.7</td>
<td>-34.1</td>
<td>0.3</td>
<td>0.6</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC/RAM 29</td>
<td>42.36744</td>
<td>-82.35222</td>
<td>Trenton Mid. Ordovician</td>
<td>64.3</td>
<td>-38.1</td>
<td>180</td>
<td>2.59</td>
<td>8.94</td>
<td>5.9</td>
<td>36.8</td>
<td>2.7</td>
<td>0.3</td>
<td>0.7</td>
<td>0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ram No. 84</td>
<td>42.64817</td>
<td>-82.28078</td>
<td>Black River Mid. Ordovician</td>
<td>88.1</td>
<td>-40.8</td>
<td>194</td>
<td>2.52</td>
<td>8.32</td>
<td>7.2</td>
<td>33.9</td>
<td>3.4</td>
<td>-32.5</td>
<td>0.3</td>
<td>0.8</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambright #80</td>
<td>43.23490</td>
<td>-80.53375</td>
<td>Black River Mid. Ordovician</td>
<td>49.6</td>
<td>-41.9</td>
<td>208</td>
<td>3.61</td>
<td>10.54</td>
<td>7.3</td>
<td>36.1</td>
<td>1.4</td>
<td>-32.4</td>
<td>0.2</td>
<td>0.3</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambright #63</td>
<td>43.35257</td>
<td>-80.91059</td>
<td>Camb./Black R. Camb./Mid. Ordo.</td>
<td>79.8</td>
<td>-38.4</td>
<td>176</td>
<td>2.94</td>
<td>8.18</td>
<td>6.8</td>
<td>33.1</td>
<td>3.1</td>
<td>-31.6</td>
<td>4.2</td>
<td>0.7</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGC #7 (Zehr Farms)</td>
<td>43.28426</td>
<td>-80.74963</td>
<td>Cambrian Cambrian</td>
<td>78.6</td>
<td>-38.0</td>
<td>174</td>
<td>2.45</td>
<td>6.18</td>
<td>8.1</td>
<td>34.2</td>
<td>5.3</td>
<td>-31.7</td>
<td>1.0</td>
<td>2.0</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan Basin</td>
<td></td>
</tr>
<tr>
<td>North Charlton A1-18</td>
<td>45.08301</td>
<td>-84.48845</td>
<td>Antrim Up. Devonian</td>
<td>93.8</td>
<td>-55.1</td>
<td>270</td>
<td>5.58</td>
<td>13.83</td>
<td>0.2</td>
<td>-36.6</td>
<td>0.1</td>
<td>-30.9</td>
<td>0.0</td>
<td>0.0</td>
<td>5.91</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Charlton C4-31</td>
<td>44.94765</td>
<td>-84.47410</td>
<td>Antrim Up. Devonian</td>
<td>43.7</td>
<td>-52.7</td>
<td>256</td>
<td>4.74</td>
<td>12.73</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-14.3</td>
<td>0.0</td>
<td>0.0</td>
<td>5.60</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mennier D2-5</td>
<td>44.93099</td>
<td>-84.46496</td>
<td>Antrim Up. Devonian</td>
<td>93.5</td>
<td>-53.8</td>
<td>242</td>
<td>5.22</td>
<td>12.59</td>
<td>0.8</td>
<td>-45.1</td>
<td>0.1</td>
<td>-14.3</td>
<td>0.0</td>
<td>0.0</td>
<td>5.60</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terra Energy C3-8</td>
<td>44.91931</td>
<td>-84.46158</td>
<td>Up. Antrim Up. Antrim</td>
<td>91.9</td>
<td>-54.1</td>
<td>255</td>
<td>4.73</td>
<td>11.67</td>
<td>2.6</td>
<td>-45.5</td>
<td>0.1</td>
<td>-15.1</td>
<td>0.1</td>
<td>0.0</td>
<td>5.32</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWBU Berea</td>
<td>43.63273</td>
<td>-84.14695</td>
<td>Berea Up. Devonian</td>
<td>41.5</td>
<td>-54.5</td>
<td>330</td>
<td>3.90</td>
<td>-13.80</td>
<td>23.0</td>
<td>24.3</td>
<td>2.6</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.10</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dundee Gepford</td>
<td>43.65036</td>
<td>-84.76637</td>
<td>Dundee Mid. Devonian</td>
<td>44.9</td>
<td>-53.6</td>
<td>325</td>
<td>5.05</td>
<td>-11.09</td>
<td>33.7</td>
<td>37.0</td>
<td>16.9</td>
<td>-31.0</td>
<td>1.8</td>
<td>2.8</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Chester</td>
<td>44.96016</td>
<td>-84.53597</td>
<td>Niagara Mid. Silurian</td>
<td>59.6</td>
<td>-55.7</td>
<td>308</td>
<td>1.53</td>
<td>-23.13</td>
<td>15.8</td>
<td>12.8</td>
<td>2.3</td>
<td>2.7</td>
<td><0.1</td>
<td>0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelow 2-13</td>
<td>44.92407</td>
<td>-84.50599</td>
<td>Niagara Mid. Silurian</td>
<td>83.3</td>
<td>-55.1</td>
<td>258</td>
<td>1.49</td>
<td>-17.34</td>
<td>8.8</td>
<td>34.5</td>
<td>4.4</td>
<td>-29.8</td>
<td>1.9</td>
<td>1.7</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wesenen 2-19</td>
<td>44.98099</td>
<td>-84.47189</td>
<td>Niagara Mid. Silurian</td>
<td>80.9</td>
<td>-54.0</td>
<td>276</td>
<td>1.87</td>
<td>-17.11</td>
<td>10.5</td>
<td>-35.9</td>
<td>5.6</td>
<td>-30.9</td>
<td>1.3</td>
<td>1.6</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The carbon stable isotope ratios of ethane and propane were measured by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) on a Finnigan MAT 252 interfaced with a Varian 3400 capillary GC following the method outlined in Ward et al. (2004). Hydrocarbons were separated by a Poroplot Q column (25 m × 0.32 ID) with the following temperature program: 40 °C during 1 min, then increase to 190 °C at 5 °C/min and hold for 5 min. The total error including accuracy and reproducibility was ±0.5‰ with respect to V-PDB standard.

3.5. Water geochemistry

At the time of the gas sample collection in Southwest Ontario, no water samples could be collected due to the gas field operations. However, the same sedimentary formations investigated in the present study were investigated for water geochemistry and isotopic composition in previous studies (Dollar et al., 1991; Hobbs et al., 2011; Skuce et al., 2015). For each collected gas from Southwest Ontario, we report in Table 2 the average of δ18O, δD, as well as the Total Dissolved Solid (TDS) measured in these same formations by previous studies. The reported 1σ represents the standard deviation of the mean. In the Michigan Basin, water samples were collected where possible. Major chemistry results and total dissolved solids (TDS) were measured at Amherst College, and δ18O and δD were measured at the Environmental Isotope Laboratory, University of Waterloo. For those water samples, the 1σ represents the external error. Note that for two of the Niagaran gas samples (Gelow 2-13 and Wesenam 2-19), it was not possible to sample the formation water. For these two, we used published data from Wilson and Long (1993).

3.6. Preparation of methanogens in laboratory

Methanogen cultures were prepared at Carnegie Institution of Washington as well as at University of Southern California following the methods described in Young et al. (2017). All strains were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures. Methanococcus maripaludis (DSM 14266; Jones et al., 1983) and Methanococcus aeolicus (DSM 17251; Kendall et al., 2006) were grown in a crimped serum bottles with a ratio of headspace to culture volume of 70:7 mL in a base medium containing (L-1 distilled water): KH2PO4 (0.14 g), NH4Cl (0.25 g), KCl (0.34 g), MgCl2·6H2O (4.0 g), CaCl2·2H2O (0.14 g), NaHCO3 (5.0 g), NaCl (18.0 g), Fe(NH4)2(SO4)2·6H2O (2.0 mg), resazurin (1.0 mg), 10 mL of trace-element solution 141 (Balch et al., 1979) and 10 mL of vitamin solution (Wolin et al., 1963). The medium was prepared anaerobically under H2/CO2 (80:20) with Na2S·9H2O (0.5 g/L) as the reducing agent. The pH of the medium was adjusted to 7.0. Batch reactions at 2 bar absolute pressure were incubated under optimal temperature conditions of 37 °C and 46 °C, respectively. Single un-inoculated serum vials, incubated along with the cultures at 37 °C and 46 °C, were used as negative controls. Methanosarcina barkeri (DSM 800) strain was grown under CH3OH (methylo trophic pathway) at 37 °C in a base medium containing (L-1 distilled water): K2HPO4 (0.35 g), KH2PO4 (0.23 g), NH4Cl (0.50 g), MgSO4·7H2O (0.50 g), CaCl2·2H2O (0.25 g), NaCl (2.25 g), 2 mL of FeSO4·7H2O solution (0.1% w/v in 0.1 H2SO4), 1 mL of trace-element solution SL-10 (Widdel et al., 1976; Jones et al., 1983) and Cell Cultures. In-hub was prepared anaerobically under H2/CO2 (80:20) with Na2S·9H2O (0.5 g/L) as the reducing agent. The pH of the medium was adjusted to 7.0. Batch reactions at 2 bar absolute pressure were incubated under optimal temperature conditions of 37 °C and 46 °C, respectively. Single un-inoculated serum vials, incubated along with the cultures at 37 °C and 46 °C, were used as negative controls. Methanosarcina barkeri (DSM 800) strain was grown under CH3OH (methylo trophic pathway) at 37 °C in a base medium containing (L-1 distilled water): K2HPO4 (0.35 g), KH2PO4 (0.23 g), NH4Cl (0.50 g), MgSO4·7H2O (0.50 g), CaCl2·2H2O (0.25 g), NaCl (2.25 g), 2 mL of FeSO4·7H2O solution (0.1% w/v in 0.1 H2SO4), 1 mL of trace-element solution SL-10 (Widdel et al., 1976; Jones et al., 1983) and Cell Cultures. In-hub was prepared anaerobically under H2/CO2 (80:20) with Na2S·9H2O (0.5 g/L) as the reducing agent. The pH of the medium was adjusted to 7.0. Batch reactions at 2 bar absolute pressure were incubated under optimal temperature conditions of 37 °C and 46 °C, respectively. Single un-inoculated serum vials, incubated along with the cultures at 37 °C and 46 °C, were used as negative controls. Methanosarcina barkeri (DSM 800) strain was grown under CH3OH (methylo trophic pathway) at 37 °C in a base medium containing (L-1 distilled water): K2HPO4 (0.35 g), KH2PO4 (0.23 g), NH4Cl (0.50 g), MgSO4·7H2O (0.50 g), CaCl2·2H2O (0.25 g), NaCl (2.25 g), 2 mL of FeSO4·7H2O solution (0.1% w/v in 0.1 H2SO4), 1 mL of trace-element solution SL-10 (Widdel et al., 1976; Jones et al., 1983) and Cell Cultures. In-hub was prepared anaerobically under H2/CO2 (80:20) with Na2S·9H2O (0.5 g/L) as the reducing agent. The pH of the medium was adjusted to 7.0. Batch reactions at 2 bar absolute pressure were incubated under optimal temperature conditions of 37 °C and 46 °C, respectively. Single un-inoculated serum vials, incubated along with the cultures at 37 °C and 46 °C, were used as negative controls. Methanosarcina barkeri (DSM 800) strain was grown under CH3OH (methylo trophic pathway) at 37 °C in a base medium containing (L-1 distilled water): K2HPO4 (0.35 g), KH2PO4 (0.23 g), NH4Cl (0.50 g), MgSO4·7H2O (0.50 g), CaCl2·2H2O (0.25 g), NaCl (2.25 g), 2 mL of FeSO4·7H2O solution (0.1% w/v in 0.1 H2SO4), 1 mL of trace-element solution SL-10 (Widdel et al., 1976; Jones et al., 1983) and Cell Cultures. In-hub was prepared anaerobically under H2/CO2 (80:20) with Na2S·9H2O (0.5 g/L) as the reducing agent. The pH of the medium was adjusted to 7.0. Batch reactions at 2 bar absolute pressure were incubated under optimal temperature conditions of 37 °C and 46 °C, respectively. Single un-inoculated serum vials, incubated along with the cultures at 37 °C and 46 °C, were used as negative controls. Methanosarcina barkeri (DSM 800) strain was grown under CH3OH (methylo trophic pathway) at 37 °C in a base medium containing (L-1 distilled water): K2HPO4 (0.35 g), KH2PO4 (0.23 g), NH4Cl (0.50 g), MgSO4·7H2O (0.50 g), CaCl2·2H2O (0.25 g), NaCl (2.25 g), 2 mL of FeSO4·7H2O solution (0.1% w/v in 0.1 H2SO4), 1 mL of trace-element solution SL-10 (Widdel et al., 1976; Jones et al., 1983) and Cell Cultures.
et al., 1983), yeast extract (2.0 g), casitone (2.0 g), 0.50 mL of Na-resazurin solution (0.1% w/v), NaHCO₃ (0.85 g), CH₃OH (5 ml), Na₂S·9H₂O (0.30 g), L-cysteine-HCl × 7H₂O (0.30 g) and 10 mL of vitamin solution (Wolin et al., 1963). Medium was prepared anaerobically under N₂/C0₂ (80:20) and with a final pH of 6.5–6.8. CH₄ produced during culturing was extracted from the serum bottles using a gas-tight syringe and purified on the vacuum line to remove water vapor and any other headspace gases.

4. RESULTS

4.1. Methane in Southwest Ontario

Gases from Southwest Ontario strata are predominantly composed of methane (40–90%), with variable amounts of ethane (2–21%) and propane (1–11%), as well as nitrogen (up to 15%). These gases show relatively homogeneous C₁/C₂⁺ ratios, usually between 5 and 10 (average is 7 ± 3). In this set of samples, methane exhibits significant variation in isotopic composition, ranging from −54% to −37% in δ¹³C, and from −281 to −172% in δD (Table 1). A general observation is that deeper Cambrian and Ordovician gases are isotopically more enriched in ¹³C and D than methane found in the Silurian formations. When isotopic compositions are reported in a conventional ‘Scholl plot’ (Fig. 3a), Cambrian and Ordovician gases plot in a region typical of thermogenic gases, while gases from the Silurian strata are more ambiguous and could be either interpreted as low thermal maturity gases (Scholl, 1988; Hunt, 1996; Etiope et al., 2009), or as methane deriving from microbial methanogenesis, or as mixtures with these two sources. The range of isotopic variations observed here, together with the broad positive correlation between δ¹³C and δD, are similar to previously published data on Southwest Ontario hydrocarbon gases (Sherwood Lollar et al., 1994; Clark et al., 2015).

Samples that were measured for clumped isotopologues cover the full range from most depleted to most enriched bulk isotope composition, and are reported in Fig. 3c in a Δ¹³CH₃D versus Δ¹²CH₂D₂ diagram. In this doubly-substituted isotopologue space, methane at internal equilibrium should fall on the equilibrium curve, where both isotopologues indicate the same formation temperature (calculated using equations in Section 3.3). Cambrian and Ordovician gases typically plot on the equilibrium curve within error. Converting Δ¹³CH₃D and Δ¹²CH₂D₂ into formation temperatures (Table 3), these gases appear to have been equilibrated at temperatures ranging between 110 °C and 204 °C. By contrast, methane from the Silurian formations exhibit large disequilibrium, displaced from the equilibrium curve toward very negative Δ(13)C-D(Fig. 3a).

Fig. 4 shows the clumped compositions versus the D/H fractionation between methane and water from the same formations. This type of diagram was previously used by Stolper et al. (2015) and Wang et al. (2015) to distinguish methane samples formed at equilibrium, by investigating whether the fractionation between methane and water corresponded to equilibrium at the temperature inferred from
We note though that this equilibrium identification method implicitly assumes that the methane and the water are co-genetic, and does not consider that gases and water might have distinct sources and/or migration pathways. Here however, samples that are close to internal equilibrium with respect to mass-18 compositions (Cambrian and Ordovician gases), also appear near equilibrium with respect to D/H fractionation between methane and water. By contrast, Silurian gases show disequilibrium in both $\Delta^{13}CH_3D$ and $\Delta^{13}CH_2D_2$ space (Fig. 3c) and in the D/H fractionation (Fig. 4a and b).
oxidation of hydrocarbons. Compared to Southwest Ontario, δ\(^{13}\)C of methane appears relatively homogeneous, with values ranging between −53 and −56‰. By contrast, δD of methane shows greater variability, with values ranging from −242‰ to −330‰. In a ‘Schoell’ plot, all samples from the Michigan Basin plot in the region where thermogenic gases and microbial gases overlap (Fig. 3a).

Fig. 3. δ\(^{13}\)CH\(_3\)D and δ\(^{12}\)CH\(_2\)D\(_2\) plotted versus the fractionation between methane and associated formation waters. This fractionation is reported as ε (as in Wang et al., 2015). The equilibrium curve is calculated using Horita and Wesolowski (1994) and Horibe and Craig (1995) calibrations. For Southwest Ontario, no water samples could be collected at the time of gas collection, hence average values of water samples collected and measured in previous studies (Hobbs et al., 2011) in the same formations are used (see Table 2). Symbols as in Fig. 3.

In terms of clumped compositions, these Michigan Basin samples plot in two distinct fields on the δ\(^{13}\)CH\(_3\)D versus δ\(^{12}\)CH\(_2\)D\(_2\) diagram (Fig. 3c). The four Antrim Shale samples all plot slightly below the equilibrium curve with values for δ\(^{13}\)CH\(_3\)D and for δ\(^{12}\)CH\(_2\)D\(_2\) ranging between 4.7 and 5.6‰, and between 11.7 and 13.8‰, respectively. Importantly, two of the Antrim Shale wells (North Charlton A1-18 and State Charlton C4-31) were previously sampled by Stolper et al. (2015) who reported δ\(^{13}\)CH\(_3\)D values in good agreement with our measurements. These are the first reported values for δ\(^{12}\)CH\(_2\)D\(_2\). By contrast, the three samples from the Silurian Niagaran unit (Dundee and Berea) show significant deviations from the equilibrium curve, comparable in magnitude to that observed in Silurian samples from Southwest Ontario.

Table 3
Apparent temperatures calculated (when possible) from δ\(^{13}\)CH\(_3\)D and δ\(^{12}\)CH\(_2\)D\(_2\).

<table>
<thead>
<tr>
<th>Well name</th>
<th>Age</th>
<th>δ(^{13})CH(_3)D T (°C)</th>
<th>δ(^{12})CH(_2)D(_2) T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwest Ontario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ram No.33</td>
<td>Mid. Silurian</td>
<td>1.66</td>
<td>298</td>
</tr>
<tr>
<td>Mesa Et Al Bemore No.1</td>
<td>Mid. Silurian</td>
<td>2.50</td>
<td>200</td>
</tr>
<tr>
<td>Clearwood et al #12</td>
<td>Mid. Silurian</td>
<td>2.99</td>
<td>159</td>
</tr>
<tr>
<td>NOG #6</td>
<td>Mid. Silurian</td>
<td>3.39</td>
<td>131</td>
</tr>
<tr>
<td>Ram/BP 4</td>
<td>Mid. Ordovician</td>
<td>2.96</td>
<td>161</td>
</tr>
<tr>
<td>PPC/RAM 29</td>
<td>Mid. Ordovician</td>
<td>2.59</td>
<td>192</td>
</tr>
<tr>
<td>Ram No. 84</td>
<td>Mid. Ordovician</td>
<td>2.52</td>
<td>198</td>
</tr>
<tr>
<td>Cambright #80</td>
<td>Mid. Ordovician</td>
<td>3.61</td>
<td>118</td>
</tr>
<tr>
<td>Cambright #63</td>
<td>Camb./Mid. Ordo.</td>
<td>2.94</td>
<td>163</td>
</tr>
<tr>
<td>PPC/RAM 29</td>
<td>Camb./Mid. Ordo.</td>
<td>2.45</td>
<td>204</td>
</tr>
<tr>
<td>Michigan Basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Charlton A1-18</td>
<td>Up. Devonian</td>
<td>5.58</td>
<td>31</td>
</tr>
<tr>
<td>State Charlton C4-31</td>
<td>Up. Devonian</td>
<td>4.74</td>
<td>62</td>
</tr>
<tr>
<td>Meunier D2-5</td>
<td>Up. Devonian</td>
<td>5.22</td>
<td>43</td>
</tr>
<tr>
<td>Terra Energy C3-8</td>
<td>Up. Devonian</td>
<td>4.73</td>
<td>62</td>
</tr>
<tr>
<td>NWBU Berea</td>
<td>Up. Devonian</td>
<td>3.90</td>
<td>101</td>
</tr>
<tr>
<td>Dundee Gepford</td>
<td>Mid. Devonian</td>
<td>5.05</td>
<td>50</td>
</tr>
<tr>
<td>State Chester</td>
<td>Mid. Silurian</td>
<td>1.53</td>
<td>320</td>
</tr>
<tr>
<td>Gelow 2–13</td>
<td>Mid. Silurian</td>
<td>1.49</td>
<td>326</td>
</tr>
<tr>
<td>Wesanen 2–19</td>
<td>Mid. Silurian</td>
<td>1.87</td>
<td>270</td>
</tr>
</tbody>
</table>
When Δ^{13}CH$_3$D and Δ^{13}CH$_2$D$_2$ are reported versus D/H fractionation between methane and water (Fig. 4a and b), samples that are in disequilibrium with respect to clumped isotopologues are also in disequilibrium for D/H (Silurian, and Devonian Dundee and Berea). The exception are the samples from the Antrim Shale. Those which showed approximate equilibrium in the Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ plot (Fig. 3c) are also at near-equilibrium for D/H fractionation, suggesting that methane in the shale formation was formed or re-processed towards equilibrium with the porewaters.

4.3. Methanogen cultures

Methane produced during laboratory cultures of Methanococcus maripaludis, Methanococcus aeolicus and Methanosarcina barkeri shows important departures from the mass-18 isotopologue equilibrium curve (see Table 4 and Fig. 5). Those disequilibrium values, and the fact that Δ^{12}CH$_2$D$_2$ is systematically more fractionated than Δ^{13}CH$_3$D are consistent with previous observations by Young et al. (2017), and attributed to the expression of large kinetic isotope effects during microbial methanogenesis. The negative Δ^{13}CH$_2$D$_2$ seems to be typical of microbial methanogenesis. Notably, with the exception of two Sabatier experiments producing abiotic methane (Young et al., 2017), the methane produced by Methanosarcina barkeri exhibits one of the most depleted Δ^{13}CH$_2$D$_2$ value measured so far (Δ^{13}CH$_2$D$_2 = -55.3 \pm 2$). More dedicated studies are required to better constrain controls on the extent of kinetic effects during microbial methanogenesis and abiotic organic synthesis. However, based on the six species investigated so far, a pattern may be emerging whereby the CO$_2$ reduction pathway (HCO$_3^-$ + 4H$_2$ + H$^+$ → CH$_4$ + H$_2$O) results in a smaller degree of disequilibrium compared to the methanol fermentation pathway (4CH$_3$OH → 3CH$_4$ + H$^+$ + CO$_2$ + 2H$_2$O), for both Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$.

5. DISCUSSION

5.1. Thermogenic, near-equilibrium methane, in Cambrian and Ordovician strata

Samples from the Cambrian and the Ordovician strata in southwest Ontario plot on, or slightly above the equilibrium curve (Fig. 3e), reflecting temperatures (between 110°C and 205°C – see Table 3) that are consistent with what is considered to be the typical thermogenic ‘gas window’ (Tissot and Welte, 1978). The isotopic composition of these gases, between −38 and −42% for δ^{13}C, and between −174 and −207% for δ^D, are also in agreement with a thermogenic origin (e.g. Whiticar, 1999). Although the thermogenic generation of light hydrocarbons (including methane) is generally discussed in terms of kinetic isotope effects (e.g. Clayton, 1991; Lorant et al., 1994; Tang et al., 2000; Xia and Gao, 2017), this novel dataset which combines both Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$, adds further support to the hypothesis made by Stolper et al. (2014b) proposing that thermogenic methane was generally at internal isotopic equilibrium with its formation temperature. Indeed, with few exceptions in unconventional gas reservoirs (Douglas et al., 2017; Stolper et al., 2017), the vast majority of thermogenic gases found in natural reservoirs or deriving from pyrolys is experiments (with one exception, see following section) yield clumped compositions in agreement with internal equilibrium (Stolper et al., 2014b, 2015, 2017; Wang et al., 2015; Douglas et al., 2016, 2017; Young et al., 2017).

The fact that Cambrian and Ordovician gases appear to be dominantly of thermogenic origin is consistent with previous studies on these formations (Barker and Pollock, 2017).
At this stage though, it is difficult to evaluate if the apparent temperature gradient derived from mass-18 isotopologues (from 110 °C to 205 °C) reflects a maturity trend (which would be consistent with increasing bulk heavy/light isotope ratios – see Table 1), or if it reflects mixing between two thermogenic sources. As previously mentioned, the abundant presence of thermogenic gases in Southwest Ontario strata was considered enigmatic, given thermal estimates based on Conodonts Alteration Index suggesting that the thermal burial regime experienced by the Paleozoic strata was at most 60–90 °C (Legall et al., 1981; Obermajer et al., 1996). The higher temperatures inferred from ethane and propane δ13C relationship (Sherwood Lollar et al., 1994), and confirmed here with clumped isotopologues, are remarkably similar to homogenization temperatures of fluid inclusions found in hydrothermal dolomites throughout Ordovician strata (Coniglio et al., 1994; Haeri-Ardakani et al., 2012). Those fluids inclusions, which sometimes contain traces of hydrocarbons, record temperatures ranging between 100 and 220 °C, thus covering the range of temperatures inferred from Δ13CH3D and Δ13CH2D2. This supports a scenario in which thermogenic generation and migration of hydrocarbons in Southwest Ontario is closely related to the circulation of hydrothermal fluids estimated to have occurred between 350 Myrs (Haeri-Ardakani et al., 2012) and 440 Myrs ago (Davies and Smith, 2006). Those warm dolomitizing fluids likely originated from deeper environments in the Michigan or in the Appalachian Basin (both have experienced greater burial temperatures) and have been suggested to have circulated through the permeable Cambrian aquifer before infiltrating Ordovician through vertical fractures (Davies and Smith, 2006). Overall, this would indicate a long-term preservation of fluids and gases in Cambrian and Ordovician units. This conclusion is in agreement with the accumulation of radiogenic helium observed in this units, which suggests that the fluids have been isolated for more than 260 Myrs (Clark et al., 2013).

In the plot of Δ13CH3D or Δ13CH2D2 versus D/H fractionation between methane and water, Cambrian and Ordovician gases also plot on or near the equilibrium curve (see Fig. 4a and b). This indicates that the measured D/H fractionation between methane and water is close to equilibrium for temperatures similar to the one recorded by Δ13CH3D and Δ13CH2D2 and could suggest methane and water in these formations are co-genetic. In addition, the fact that neither clumped isotopologue, nor methane and water D/H fractionations have re-equilibrated with the current lower temperatures of these formations (<40 °C), supports the idea that the methane ‘blocking temperature’ (below which rates of isotope exchange are too low for significant re-equilibration) is >200 °C, consistent with the temperature limit proposed by Stolper et al. (2014b, 2017) or Wang et al., (2018).

5.2. Large disequilibrium in laboratory cultures and Silurian and Devonian strata

All methane samples from laboratory cultures exhibit strong disequilibrium, characterized by significant depletions in Δ13CH3D and Δ13CH2D2 compared to growth temperatures (Table 4 and Fig. 5). This dataset confirms that the Δ13CH3D disequilibria previously observed in laboratory cultures (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Young et al., 2017; Gruen et al., 2018), are associated with even larger Δ13CH2D2 offsets from equilibrium (Young et al., 2017). Here, it is also remarkable that methane produced through the methylotrophic pathway (i.e. from methanol fermentation) seems to be associated with larger disequilibrium than methane produced through the hydrogenotrophic pathway (i.e. CO2 reduction). Whether or not the expression of clumped disequilibrium, and its extent, depends on metabolic pathways is still an active subject of research, which is beyond the scope of this study. Gruen et al. (2018) recently dedicated a series of experiments to explore the expression of Δ13CH3D disequilibrium among different methanogenic species and different metabolic pathways, including methylotrophic, hydrogenotrophic and acetoclastic pathways. While they suggest that part of the disequilibrium observed in the methylotrophic pathway may be inherited from the methyl precursor (Wang et al., 2015) (in other word, from the δ13C-D composition of the methanol substrate), overall their results tend to suggest that clumped disequilibrium may not depend on the metabolic pathway. According to Gruen et al. (2015), disequilibrium arises during enzymatic reactions that are common to all pathways (such as the last step of methyl-coenzyme M reduction), suggesting that the extent of disequilibrium is controlled at first order by the rate of methanogenesis (Wang et al., 2015; Stolper et al., 2015; Gruen, 2018).

Overall, although we have not characterized the δ13C-D composition of the methanol substrate used for the cultures in this study, the dramatic Δ13CH2D2 depletions compared to Δ13CH3D depletions for both methylotrophic and hydrogenotrophic pathways, suggests that clumped disequilibrium may not be controlled entirely by classic kinetics, and may also result from quantum tunneling of hydrogen atoms as previously suggested by Young et al. (2017), or from combinatorial (statistical) effects of drawing hydrogen from multiple reservoirs (Yeung et al., 2016, Young et al., 2017).

From Fig. 5, it is remarkable that all Silurian gases (as well as two Devonian gases) deviate from the equilibrium curve in the ‘clumped space’ and plot in a similar region to methane from methanogenic cultures (here, from the CO2-reduction pathway). These disequilibria are all associated with low δ13C and δD compositions (Fig. 3a), which by themselves could be indicative of a microbial methanogenesis contribution (e.g. Whiticar et al., 1986; Etiope and Sherwood Lollar, 2013), or an early thermogenic generation (Scholl, 1988; Hunt, 1996; Etiope et al., 2009). Their wet gas contents (characterized by C1/C2+ ratio ranging between ~1 and 10) are a priori more reflective of a thermogenic origin. It can be noted that for some of these samples, if only Δ13CH3D was measured, the inferred temperature would have been apparently reasonable with thermogenic formation temperatures (ranging between 101 °C and 200 °C – Table 3). Other samples with elevated Δ13CH3D-based temperatures (~ 270 °C) are not consistent with thermogenic temperatures (an evidence for disequilibrium according to Stolper et al., 2017).
Here the addition of the data for the abundance of a second clumped isotope, Δ^{12}CH$_2$D$_2$, confirms the prevalence of disequilibrium for all of these natural gas samples. Because to date similarly large disequilibrium in both Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ has only been reported for laboratory cultures (this study, Young et al., 2017), one can question whether disequilibrium is necessary indicative of microbial methanogenesis or if it could result as well from thermogenic generation and/or processes related to gas migration (Stolper et al., 2017; Shuai et al., 2018). In what follows, we discuss why we believe the Silurian disequilibrium trend reflects, to first order, a mixing between two different sources of methane, and why the disequilibrium endmember observed in these natural gases is likely of microbial origin (despite the apparent low C$_1$/C$_2$+ ratios).

5.2.1. Mixing different sources of methane in the Silurian units

Silurian samples from Southwest Ontario display variable degrees of disequilibrium in the clumped space. This variability of Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ correlates with the variability observed in the δ^{13}C-δD space (Fig. 3a and c). As noted previously, the broad correlation between δ^{13}C and δD has been interpreted to reflect various degrees of mixing between an isotopically enriched methane (mostly present in Cambrian and Ordovician units), and more depleted methane present in Silurian units (Sherwood Lollar et al., 1994). Here the addition of clumped isotopologues adds further support to this mixing scenario between two sources of methane: one, nearly equilibrated in the clumped space with higher δ^{13}C and δD values, and one exhibiting strong disequilibrium with lower δ^{13}C and δD values (see Fig. 6). Mixing between methane endmembers can yield non-linearity effects of Δ^{12}CH$_2$D$_2$ scaling (more broadly discussed by Eiler and Schauble, 2004 for CO$_2$ isotopologues). Young et al. (2016, 2017) have shown that mixing can result in significant departures from the equilibrium curve in Δ^{13}CH$_3$D-Δ^{12}CH$_2$D$_2$ space and, while these non-linearity effects can add some complexity in interpreting clumped isotopologue signatures, they can also be a powerful tool to quantitatively resolve mixing (Young et al., 2016; Douglas et al., 2016), provided that the end-members are known, or at least estimated. For the mixing models shown in Fig. 6, the thermogenic methane endmember was assumed to be similar to the thermogenic gases found in Cambrian or the Ordovician units. Given the small variability observed for these samples, both in terms of clumped (with equivalent temperatures ranging between ~100 and 200 °C) and bulk isotopic compositions, we define the thermogenic endmember by averaging the six samples from Cambrian and Ordovician, yielding δ^{13}C = $-$39.7‰, δD = $-$189‰, and Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ appropriate for a temperature of 155 °C. Similarly, we derived the disequilibrium endmember by averaging Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$, δ^{13}C and δD compositions of the two most disequilibrium Silurian gases: Ram No.33 in Southwest Ontario, and State Chester-F in the Michigan Basin. As it will be discussed below, the methane samples in the Silurian units with the greatest departures from equilibrium are not necessarily the “pure” endmembers and could themselves represent mixtures with an even more depleted endmember. Overall, this two-endmember mixing model is a first-order approximation for explaining the methane variability in these Paleozoic sections. The selected end-members are for the purposes of demonstrating possible fit to a mixing model.

5.2.2. Early thermogenic or relic microbial methanogenesis in Silurian Strata?

While at least one source of methane in the Silurian strata is almost certainly of thermogenic origin and likely plotting near or on the equilibrium curve in the clumped space (similar to Cambrian and Ordovician gases), the origin of the disequilibrium endmember can be examined. To date, most thermogenic gases investigated have revealed Δ^{13}CH$_3$D, or Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$, in relative agreement with formation temperatures, suggesting that thermogenic gases are generally formed at or close to internal isotopic equilibrium (Stolper et al., 2014b, 2015, 2017; Wang et al., 2015; Douglas et al., 2016, 2017; Young et al., 2018). Notable exceptions were found in some oil-associated unconventional gas reservoirs (Stolper et al., 2017; Douglas et al., 2017), where Δ^{13}CH$_3$D-based temperatures as high as 340 °C (i.e. not consistent with thermogenic origin, nor with oil stability) were seemingly reflecting a disequilibrium, although the absence of Δ^{12}CH$_2$D$_2$ measurements prevents direct comparison to the dataset in this study. This led Stolper et al. (2017) to consider the possibility for thermogenic methane to not be at internal equilibrium, and instead to reflect kinetic effects associated with methane generation, or gas migration, or even in the case of these unconventional gas reservoirs, with the oil and gas recovery method used (e.g. hydraulic fracturing). It should be noted that the latter is not applicable to the Silurian gases given the conventional nature of these reservoirs (Barker and Pollock, 1984).

The disequilibrium exhibited in these Silurian gases is unlikely to result from gas migration. During gas migration, diffusion is sometimes considered as viable process for isotopic fractionation because of the relative difference of diffusion coefficients between isotopologues. As lighter isotopologues theoretically diffuse faster, the gas at the migration front would be depleted in δ^{13}C and δD, while the residual gas would be enriched in δ^{13}C and δD (e.g. Prinzhofer and Pernaton, 1997; Zhang and Kroos, 2001). The magnitude of isotopic fractionation will depend on whether methane diffuses as a gas or through liquid solvent (e.g., water). In all cases though, Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ should be anti-correlated with δ^{13}C and δD (Young et al., 2017); which is not observed in our data. Furthermore, in the Δ^{13}CH$_3$D-Δ^{12}CH$_2$D$_2$ space, a physical fractionation by molecular mass (such as diffusion) must produce a 1:1 slope since both axes reflect 18/16 mass ratios, thus providing a reliable test for molecular mass fractionation (Young et al., 2017). Supposing that the original gas was plotting on the equilibrium curve (similar to gases from the Cambrian and Ordovician units), it is not possible to produce such depleted Δ^{12}CH$_2$D$_2$ endmember values by diffusion alone.

Recent pyrolysis experiments (Shuai et al., 2018) demonstrated that disequilibrium Δ^{13}CH$_3$D values can be pro-
Fig. 6. First order mixing model between the mean of the most two most disequilibrated samples (d) and the mean of the most 13C and D-enriched samples in Cambrian and Ordovician strata (assumed to be representative of the thermogenic endmember in the Silurian strata). All isotopic parameters are plotted versus each other, and demonstrate that both Δ^{13}CH$_3$D-Δ^{15}CH$_2$D$_2$ and δ^{13}C-δD variations observed in the Silurian strata are best explained by a simple two-endmember mixing relationship.
duced at high thermal maturity (likely resulting from secondary cracking of wet gases particularly of ethane), but there is still paucity of experimental characterization of methane clumped compositions during thermogenic generation and cracking of different type of organic matter. In particular, it is not clear whether the large deficits in Δ^{13}CH$_3$D and Δ^{13}CH$_2$D$_2$ values by production of immature gases, means that we cannot formally exclude this as a possible explanation for the observed disequilibrium. However, in Silurian gases at least, the idea of significantly different maturity regime from Cambrian/Ordovician gases is not supported by the δ^{13}C and δD of ethane and propane that appear to be similar in range (Table 1 and Fig. 7) to the ethane and propane found in Cambrian and Ordovician formations (Barker and Pollock, 1984; Sherwood Lollar et al., 1994). This suggests relatively similar (if not identical) thermogenic gas components in terms of process and maturation levels for both Cambrian/Ordovician and Silurian gases (Sherwood Lollar et al., 1994).

Alternatively, based on existing data for Δ^{13}CH$_2$D as well as for Δ^{12}CH$_2$D$_2$, the simplest explanation for the isotopic composition of the Silurian gases is that a microbial component mixing with the original thermogenic gas causes the low methane δ^{13}C and δD values and the strong disequilibrium observed in the clumped space. In Southwest Ontario, this hypothesis was first proposed by Sherwood Lollar et al. (1994) and was further supported by Clark et al. (2015), who explored the distribution of methane δ^{13}C and δD with depth. Importantly, the method they used (i.e. desorption from rock cores) not only allowed the measurement of δ^{13}C and δD with a fine depth resolution (approximately every ~ 5 m), but also allowed the measurement of δ^{15}C of CO$_2$ (which was systematically below detection limit in the present study). Clark et al. (2015) observed that gas samples with the lowest δ^{13}C and δD values (in their study, down to $-53\%e$ and $-330\%e$ respectively) were found in the thick Upper Ordovician black shale underlining the Silurian strata (see Fig. 1c), and were coinciding with sharp positive excursions of δ^{13}C of CO$_2$ (from $-5\%e$ to $+10\%e$) that are consistent with closed system microbial methanogenesis (e.g. Whiticar, 1999).

According to this vertical profile therefore, the source for low methane δ^{13}C and δD in Silurian strata is likely originating from the underlying Upper Ordovician black shale (Clark et al., 2015). Overall, the low methane δ^{13}C and δD values, together with positive excursions of δ^{13}C of CO$_2$ (Clark et al., 2015), and large Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ deficits now provided by this study, are all strong arguments in favor of a microbial component of methane in the Silurian gases that are explored here.

Invoking microbial addition of methane despite low and rather homogeneous C_1/C_{2+} (from 1 to 10) might seem at first to be contradictory, because environments affected by microbial methanogenesis are generally expected to exhibit elevated C_1/C_{2+} > 1000. We note however, that elevated C_1/C_{2+} in sedimentary environments might reflect the combined effects of degradation of ethane and propane, in to net addition of methane (Martini et al., 2003, 2008). In fact, examination of mixing relationships between two sources of different C_1/C_{2+} ratios indicates that the resulting mixture is relatively insensitive to the elevated C_1/C_{2+} source. The mixture ratio (R) can be calculated as (Etiophe and Sherwood Lollar, 2013)

\[
1/R(f) = f/R_{\text{microbial}} + (1 - f)/R_{\text{thermogenic}}
\]

where f is the proportion of microbial methane added (typically $R_{\text{microbial}} \approx 10,000$). From Eq. (7) one finds that even 90% addition ($f = 0.9$) of microbial gas will only shift a low C_1/C_{2+} ratio of 1–10. In other words, a limited addition of microbial methane in Silurian gases could have significantly modified the bulk and the clumped isotopologue signatures of the mixture methane, while keeping the C_1/C_{2+} to rather low and seemingly thermogenic values. We note that the idea of a microbial methanogenesis contribution (associated with oil biodegradation, i.e. low thermal settings) was also proposed by Osborn and McIntosh (2010) and Etiophe et al. (2013) for Devonian shales gases in the Appalachian Basin showing C_1/C_{2+} as low as 1.5 together with low bulk δ^{13}C and δD (~ 50 and $-329\%e$, respectively). Using the concept of mixing to explain C_1/C_{2+}, and the δ^{13}C-δD correlation (see Fig. 6b), a hypothetical microbial endmember with δ^{13}C = $-65\%e$ and δD = $-352\%e$ can be inferred that reasonably satisfies C_1/C_{2+} ratios in Southwest Ontario Silurian gases, and suggests that they could contain as much as 60% microbially derived methane (Fig. 8a and b). This model requires a microbial endmember with a Δ^{13}CH$_3$D that is consistent with some of laboratory cultures (within 0.2‰ of Methanosarcina barkeri at 37 °C), but a Δ^{13}CH$_2$D$_2$ significantly more depleted (>20‰) than existing laboratory culture data (Fig. 8c).

Although this was not fully explored here (because of the lack of additional data), similar types of scenarios could be considered for the Dundee and the Berea samples, though they would require a thermogenic endmember with a lower C_1/C_{2+} (Fig. 8a).

Our understanding of large isotopologue disequilibrium effects, like those observed in these gas reservoirs, will benefit from further laboratory investigations on early thermogenic formation of methane. Nonetheless, based on the data to date, it appears that microbial methanogenesis is a likely explanation for the observed disequilibrium.

5.3. Low temperature microbial mediation in the Antrim Shale

In the Antrim Shale, microbial methanogenesis activity has been well documented, and proposed to be responsible for a substantial component of the methane found therein (Martini et al., 1996, 1998, 2003; Waldron et al., 2007; Kirk et al., 2012; Wuchter et al., 2013; Stolper et al.,
Here, this interpretation is apparently supported by the low methane $\delta^{13}C$ and δD values (Fig. 3a), as well as the relatively enriched $\delta^{13}C$ of CO$_2$ (12–17‰, Table 1), which is consistent with closed system methanogenesis (Martini et al., 1996; Whiticar, 1999; Stolper et al., 2015). The importance of Anaerobic Oxidation of Hydrocarbons (AOH) in the Antrim Shale has also been highlighted by Martini et al., (1998, 2003, 2008) and Budai et al. (2002). In particular, the biodegradation of ethane and propane, typically characterized by the systematic enrichment in ^{13}C (Pallasser et al., 2000) together with depletions of their relative concentrations, was proposed to be mostly responsible for the increase of C$_1$/C$_2+$ values measured along the margins of the shale (Martini et al., 2003, 2008). In general, the degradation of methane (AOM) is thought to occur at lower rates than those for ethane or propane (Kniemeyer et al., 2007; Valentine et al., 2010; Adams et al., 2013; Bose et al., 2013; Meng et al., 2017). Despite evidence for methane being oxidized in incubated porewaters (Wuchter et al., 2013), the impact of AOM on Antrim Shale gases has been more difficult to assess, likely due to combined effects of methane microbial production (Martini et al., 1998, 2003). For instance, along the northern margin of the shale (Fig. 9; Stolper et al., 2015), the methane $\delta^{13}C$ and δD do not show typical enrichments expected for a system experiencing net methane depletion through AOM (Whiticar, 1999; Seifert et al., 2006; Holler et al., 2009). This contrasts with the western margin where small enrichments of the methane $\delta^{13}C$ (Martini et al., 2003) – also correlated to propane and ethane enrichments – could support the role of AOM in the formation (Fig. 9). According to Martini et al. (2003), the intensity of AOH in the Antrim Shale versus that of microbial methanogenesis must have been primarily controlled by the sulfate availability in the porewaters. While AOH is probably dominant after episodes of freshwater recharges (such as following Pleistocene glaciations) that are likely to add substantial amount of sulfate to the porewaters, microbial methanogenesis likely resumes as the dominant process once sulfate concentrations become sufficiently low. Currently, sulfate concentrations are extremely low in the Antrim Shale (<0.1 mM, Martini et al., 2003) which should therefore favor microbial methanogenesis (Kirk et al., 2012).

In this context, these samples from the Antrim Shale represent one of the first set of data with a significant microbial methane component that appear close to internal equilibrium ($\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$, Fig. 3c) and to external equilibrium (D/H fractionation between methane and water, Fig. 4). This observation was suggested by Stolper et al. (2015) who proposed that methane in the Antrim Shale reflected the mixing between two equilibrated endmembers, one of thermogenic origin (extrapolated to $T > 144{\,}^\circ C$, C$_1$/C$_2+$ \sim 6) and one of microbial origin (extrapolated to $T \sim 20{\,}^\circ C$, C$_1$/C$_2+$ $> 10,000$). Here, although our dataset does not cover the full range of C$_1$/C$_2+$ variability explored by Stolper et al. (2015), the addition of $\Delta^{12}CH_2D_2$ data reinforces this idea of mixing between two nearly-equilibrated pools of methane. Though it should be noted the $\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$ measured in North Charlton A1-18 (the most ‘microbial’ gas based
on C1/C2+ yield slightly different clumped-based temperatures (31°C and 72°C, respectively), suggesting slight disequilibrium is present in this endmember. In order to explain the apparent equilibrium of the microbial endmember (or the absence of kinetic effects typically observed in laboratory cultures), Stolper et al. (2015) developed a model based on the reasoning of Valentine et al. (2004) in which the degree of enzymatic reversibility during microbial methanogenesis controls the deviation from internal equilibrium with environmental temperatures. According to their model, the extremely slow formation rate under low H2 availability results in nearly fully reversible methanogenesis in the Antrim Shale and in the formation of methane approaching both internal and external isotopic equilibrium (Stolper et al. 2015). While this interpretation might be valid, to date, attempts to observe the production of such near-equilibrium methane by methanogens in laboratory have been unsuccessful (Harder, 1997; Moran et al., 2005, 2007; Okumura et al., 2016). In other word, despite evidence for reversibility of one key enzyme involved in the methanogenesis pathway (Scheller et al., 2010), there...
is still no evidence that methanogens can act (nearly) fully reversibly; although this could be explained by the inability to reproduce geological conditions of growth in laboratory.

Here we suggest that near-equilibrium signature for the microbial endmember could also reflect the role of AOM (in addition to microbial methanogenesis). In natural environments, AOM is thought to mostly result from the syntrophic collaboration of methane oxidizing archaea and sulfate-reducing bacteria following: \(\text{CH}_4 + \text{SO}_4^{2-} \rightarrow \text{HCO}_3^- + \text{HS}^- + \text{H}_2\text{O} \) (e.g. Boetius et al., 2000). The relatively low standard-state Gibbs free energy of this reaction (\(-35 \text{ kJ mol}^{-1}\), Shima and Thauer, 2005; Thauer, 2011) indicates that sulfate-dependent AOM can potentially operate at near thermodynamic equilibrium, with significant reversibility (Holler et al., 2011; Yoshinaga et al., 2014; Timmers et al., 2017; Marlow et al., 2017), although the actual free energies depend on the local chemistry of the environment. While under high sulfate concentrations the methane back-flux is 3–7% of the net AOM (Holler et al., 2011), it can reach up to 78% under extremely low sulfate concentrations (<0.5 mM) (Yoshinaga et al., 2014). There is no published study so far on the effects of AOM on methane clumped isotopologues. Wang et al. (2016) investigated the kinetic isotope effects during aerobic oxidation by Methylcoccus capsulatus and reported a progressive depletion of the specific tritium and deuterium in the residual methane. As the ratio of isotope fractionation factors for \(^{13}\text{C}/^{12}\text{C}\) and \(^{D}/^{H}\) was similar to the data measured under laboratory conditions for AOM (Holler et al., 2009), Wang et al. (2016) suggested that the kinetic effect on \(^{13}\text{C}\) and \(^{D}\) during AOM – which should not deviate too significantly from the product of \(^{13}\text{C}/^{12}\text{C}\) and \(^{D}/^{H}\) fractionation factors – could be similar to that of aerobic oxidation. However, Wang et al. (2016) recognized these considerations are likely not applicable when sulfate content is low due to the potential effects of reversibility (i.e. significant methane back-flux during AOM). Indeed, Yoshinaga et al. (2014) observed that in conditions of high reversibility, such as in the sulfate-methane transition zone, the \(^{13}\text{C}/^{12}\text{C}\) of the residual methane gradually re-equilibrates with the \(^{13}\text{C}/^{12}\text{C}\) of the dissolved inorganic carbon (DIC), thus suggesting a microbial mediation towards thermodynamic equilibrium. Recently, Young et al. (2017) proposed that AOM could be similarly involved in reordering methane bonds towards clumped isotope equilibrium in deep crystalline environments from the Witwatersand Basin (South Africa), where organisms performing AOM have been previously identified (based on molecular genetic analyses, Lau et al., 2016; Simkus et al., 2016). In the context of the Antrim Shale, the well-established role of AOH, together with the nearly equilibrated \(^{13}\text{C}/^{12}\text{C}\) and \(^{D}/^{H}\) signatures, comprise supporting evidence that AOM could be involved in reordering methane bonds towards isotopic equilibrium. Stolper et al. (2015) also mentioned this possibility, but they discarded it arguing that if AOM had an important role in the Antrim Shale, thermogenic gases should be re-equilibrated to low temperature as well. However, this reasoning may not to take into account the likelihood that microbial communities (including the one performing AOM) only colonized the shallowest part of the Antrim Shale (Fig. 10), along the margins, where the incursion of freshwaters favored their development (e.g. McIntosh et al., 2002). Ongoing laboratory experiments by several research groups are expected to provide the experimental data necessarily to resolve these various processes in the near future.

5.4. Implications for sources and sinks of methane in Southwest Ontario and Michigan Basin

5.4.1. Thermogenic gases in low maturity environments

Despite the apparent low thermal maturity of the Cambrian and Ordovician units in Southwest Ontario, our study confirms a predominantly thermogenic origin for these units. In particular, the good agreement between independent formation temperatures calculated from \(\Delta^{13}\text{CH}_3\text{D}\) and \(\Delta^{13}\text{CH}_3\text{D}_2\) (ranging from 110 to 204 °C) and fluid inclusion homogenization temperatures in dolomitic cements (Coniglio et al., 1994), suggests that the presence of thermogenic gases in these formations is related to the circulation of hydrothermal fluids responsible for the precipitation of dolomitic cements. The generation of these hydrothermal fluids must have been external to the Southwest Ontario Basin. For now, two possible scenarios are proposed to explain the source of these hydrothermal fluids: (i) hydrocarbon gases have been generated outside Southwest Ontario and have migrated in Cambrian and Ordovician formations together with hydrothermal fluids, or (ii) the incursion of hydrothermal fluids in Southwest Ontario have triggered, \textit{in situ}, the generation of light hydrocarbons. It should be noted that several potential source rocks for oil generation have been proposed in the Ordovician Trenton formation by Powell et al. (1984) and Obermajer et al. (1998). Following the second scenario, those rocks could have been source rock for thermogenic gas generation as well.

5.4.2. Microbial generation and/or reprocessing of methane

Although microbial methanogenesis is recognized in a variety of geological and natural settings, its contribution to hydrocarbon reservoirs has been often investigated in sedimentary formations where the incursion of freshwaters, such as incursion events following Pleistocene glaciations, is evident (e.g. Martini et al., 1996, 1998, 2003; McIntosh et al., 2002,2004; Formolo et al., 2008; Vinson et al., 2017). In those systems, the presence and the activity of methanogens is attested to by a variety of microbiological and geochemical methods, from culturing and DNA isolations, to \(^{13}\text{C}/^{12}\text{C}\) and \(^{D}/^{H}\) fractionations of methane with CO\(_2\) and H\(_2\)O respectively (see review by Vinson et al., 2017). Importantly, these systems almost systematically indicate: (i) elevated \(\text{C}_1/\text{C}_2\), which are seemingly consistent with microbial methanogenesis contribution (although Martini et al., 1998, 2003 highlighted the role of ethane and propane degradation in increasing \(\text{C}_1/\text{C}_2\), ratios), and (ii) relatively dilute porewaters with depleted \(\delta^{18}\text{O}\) and \(\delta^{D}\) values indicative of meteoric and/or glacial meltwater addition. Taken together these correlated parameters suggest that dilution of saline brine by meteoric water and/or glacial meltwater recharge in these sedimentary
basins triggered microbial methanogenesis by lowering salinity, and providing substrates such as DIC or acetate. Conventionally the Antrim Shale would typically be considered a case-study for microbial methanogenesis in subsurface continental sedimentary system. As highlighted by this work, measurements of 13CH$_3$D and 12CH$_2$D$_2$ indicate that the microbial methane present in this formation is near thermodynamic equilibrium. This contrasts with the expression of extensive kinetic effects observed in methane derived from laboratory methanogen cultures (Stolper et al., 2015; Wang et al., 2015; Young et al., 2017; Gruen et al., 2018; this study).

In contrast, in Silurian strata from Southwest Ontario where microbial methanogenesis has also been proposed to contribute significantly to the methane pool (despite the high salinity and relatively low C$_1$/C$_2+$ (Sherwood Lollar et al., 1994; Clark et al., 2015)). The measurement of 13CH$_3$D and 12CH$_2$D$_2$ indicate clear disequilibrium of the methane. Although it is possible that as of yet unidentified kinetic effects during thermogenic generation may have had a role in promoting disequilibrium, if these disequilibrium signatures are indeed inherited from microbial methanogenesis, they would greatly contrast with the nearly equilibrated methane observed in the Antrim Shale. According to Stolper et al. (2015) and Wang et al. (2015), the expression of different degree of disequilibrium could reflect different rates of microbial methanogenesis, resulting from variable substrate availability in sedimentary formations. Alternatively, here we suggest that nearly equilibrated methane could reflect the additional effect of AOM, which has been demonstrated to be associated with high degree of reversibility (Holler et al., 2011; Yoshinaga et al., 2014) that can result in 13C/12C re-equilibration of the residual methane under low sulfate conditions (Yoshinaga et al., 2014). The idea that AOM could have an impact on the methane pool in the Antrim Shale appears relevant, given the consistent role of anaerobic oxidation of hydrocarbons such as ethane and propane in this particular formation (Martini et al., 1998, 2003). Additional controlled laboratory investigations are needed to demonstrate that AOM, particularly in low sulfate conditions, would contribute to re-equilibration of both 13CH$_3$D and 12CH$_2$D$_2$.

Fig. 10. Conceptual mixing scenario between thermogenic and microbial gases in the Antrim Shale. (a) Sketch of a South-to-North cross-section of the Antrim Shale and surrounding units. In the Antrim Shale, pristine thermogenic gases are present in more central and deeper part of the Michigan Basin, together with extremely saline brines ([Cl$^-]>3$ M). Input of freshwaters following glacial advances and retreats have created a salinity gradient from surface to depth across the cross-section, allowing the development of microbial communities in the shallowest parts of the shale. The microbial endmember has an elevated C$_1$/C$_2+$ which might mostly reflect the degradation of ethane and propane along the margins. (b) In the 13CH$_3$D-12CH$_2$D$_2$ space, the four samples measured in this study can still be viewed as reflecting a mixing between a thermogenic source (here set to \sim144 °C, following Stolper et al., 2015) and a nearly-equilibrated microbial endmember. This microbial endmember is either solely deriving from methanogenesis with high reversibility (as proposed by Stolper et al., 2015), or could be resulting from the combine (or successive) effects of microbial methanogenesis and AOM.

6. CONCLUSIONS

Depending on the processes involved, the methane cycle involves processes controlled by either at thermodynamic equilibrium effects or with large kinetic effects. Therefore, being able to determine whether methane is at thermodynamic equilibrium or not, is key to understanding and identifying subsurface methane sources and sinks. While the measurement of 13CH$_3$D alone may provide relevant information on isotope bond ordering, independent estimates of environmental temperatures are required to confirm thermodynamic equilibrium (Stolper et al., 2014, 2015; Wang et al., 2015). This study demonstrates that the measurement of 13CH$_3$D, when combined with 13CH$_2$D$_2$, offers a sensitive indicator of the degree to which methane is at thermodynamic equilibrium or where its fate is controlled by disequilibrium (kinetic) processes. Accord-
ingly, $\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$ can only be interpreted in terms of formation temperature of methane when the two reflect the same apparent formation temperature, as this provides proof of consistency with internal thermodynamic equilibrium. In instances where apparent temperatures do not agree and methane isotopologues do not reflect internal equilibrium, however, $\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$ can be used to interpret and identify methane cycling dominated by the expression of kinetic isotope effects (Young et al., 2017). The main conclusions of this study demonstrated that:

1. The investigation of $\Delta^{12}CH_2D_2$ (combined with $\Delta^{13}CH_3D$) in gases from Cambrian and Ordovician strata, confirm the prevalence of thermodynamic equilibrium for these gases that are interpreted to derive from a thermogenic origin (Stolper et al., 2014, 2015; Wang et al., 2015; Young et al., 2017).

2. In gas samples from the Silurian strata, the addition of $\Delta^{13}CH_3D$ measurements highlight the importance of identifying disequilibrium. Clumped disequilibrium is consistently associated with low bulk $\delta^{13}C$ and δD. While the effects of early thermogenic generation on clumped isotopologues remain to be explored, ethane and propane $\delta^{13}C$ support a maturity similar in Silurian and in Cambrian/Ordovician gases. Overall, the depletions observed in all four less abundant isotopologues ($^{13}CH_4$, $^{12}CH_3D$, $^{13}CH_2D$ and $^{12}CH_2D_2$), relative to Cambrian and Ordovician thermogenic gases, appear to be consistent with laboratory culture experiments for microbial methanogenesis and could support the presence of microbially-derived methane in these formations as suggested by previous authors (Sherwood Lollar et al., 1994; Clark et al., 2015).

3. The quantitative evaluation of internal equilibrium permitted by the measurement of $\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$ has reinforced the idea, originally proposed by Stolper et al. (2015), that the microbial end-member associated with elevated C_1/C_2+ in the Antrim Shale was approaching both internal and external equilibrium. While this observation could be explained by a high reversibility during low rate microbial methanogenesis (Stolper et al., 2015), we suggest this could well reflect the combined role of Anaerobic Oxidation of Methane (AOM), a process that typically operates near thermodynamic equilibrium (Timmers et al., 2017) and could re-process methane bonds towards clumped equilibrium (Yoshinaga et al., 2014; Young et al., 2017).

ACKNOWLEDGMENT

This study was supported by funding from the Natural Sciences and Engineering Research Council of Canada, the Sloan Foundation Deep Carbon Observatory and the Nuclear Waste Management Organization. The authors wish to thank Dr. Andrew Steele and Dr. Kosal Sirisen at the Carnegie Institution for helping culturing the Methanosarcina barkeri. The authors also wish to thank various industrial partners for their effort and support during sampling.

REFERENCES

Associate editor: Edward Hornibrook