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Weak, Quiet Magnetic Fields Seen 
in the Venus Atmosphere
T. L. Zhang1,2, W. Baumjohann2, C. T. Russell3, J. G. Luhmann4 & S. D. Xiao1

The existence of a strong internal magnetic field allows probing of the interior through both long term 
changes of and short period fluctuations in that magnetic field. Venus, while Earth’s twin in many 
ways, lacks such a strong intrinsic magnetic field, but perhaps short period fluctuations can still be 
used to probe the electrical conductivity of the interior. Toward the end of the Venus Express mission, 
an aerobraking campaign took the spacecraft below the ionosphere into the very weakly electrically 
conducting atmosphere. As the spacecraft descended from 150 to 140 km altitude, the magnetic field 
became weaker on average and less noisy. Below 140 km, the median field strength became steady 
but the short period fluctuations continued to weaken. The weakness of the fluctuations indicates they 
might not be useful for electromagnetic sounding of the atmosphere from a high altitude platform such 
as a plane or balloon, but possibly could be attempted on a lander.

The existence of a strong intrinsic magnetic field and the presence of time-varying fields can both be used to 
probe the electrical conductivity of a planetary crust1,2. Based on the Venus near-equatorial magnetic field sur-
veyed down to 150 km altitude by the Pioneer Venus Orbiter (PVO), it is generally accepted that Venus has no 
significant global intrinsic field3,4. Although strong variable fields are present in the Venus ionosphere, these may 
be largely spatial variations, fossil fields impressed by slowly changing interplanetary magnetic fields “played 
back” at higher frequencies by the spacecraft’s rapid motion through the ionosphere. If so, then the fields at the 
surface of Venus resulting from the diffusion of the ionospheric magnetic field into the Venus atmosphere might 
be significantly weaker than in the ionosphere and much quieter5.

The Venus Express mission, designed to complement PVO, was inserted into an elliptical orbit with periapsis 
over north pole6,7. Initially, its periapsis was close to 78˚ latitude north and 250 km altitude. Later, the spacecraft 
periapsis moved to higher latitude over the pole and then to lower latitudes. Periapsis altitude was variable but 
typically remained above 160 km. A joint analysis of the Pioneer Venus and Venus Express measurements at 
low altitude within the ionosphere revealed that the magnetic field was horizontal on the dayside and expanded 
both into the wake at low altitudes and away from the wake at high altitudes8. During the last days of the Venus 
Express mission May – July 2014, an aerobraking campaign was performed. The changes of the spacecraft orbit 
allowed the periapsis to go as low as 129.7 km in altitude, which is well below the main peak ionosphere altitude 
of ~140 km9,10. Note that the lowest altitude measured by the PVO magnetometer was 150 km.

Figure 1 shows examples of the magnetic field strength observed near periapsis by the Venus Express mag-
netometer11 from 5 consecutive passes of those low altitude orbits. The time series of 1 sec resolution of magnetic 
field data are displayed for five minutes before and after the periapsis. The range of solar zenith angle (SZA) was 
93.6° to 95.3°, and the range of periapsis altitude was 129.7 to 130.7 km for these passes. As illustrated in Fig. 1, a 
strikingly persistent feature, i.e., a weak and quiet field, is present in all passes for the 2 minutes around periapsis. 
While the Venusian ionosphere exhibits two magnetic states depending on the solar wind dynamic pressure 
conditions: either a magnetized ionosphere with large-scale horizontal magnetic fields; or an unmagnetized ion-
osphere with numerous small-scale thin structures, so-called flux ropes12,13. The magnetic field below 140 km is 
relatively weak and less fluctuating.

In order to illustrate this point more clearly, we display in Fig. 2 the altitude profiles of the magnetic field meas-
urements on 33 passes, from June 6 to July 12, 2014. Here are shown altitude profiles of the magnetic field strength 
whenever the Venus Express periapsis was below 150 km altitude. All together, 66 altitude profiles (counting inbound 
and outbound separately for each pass) are displayed in Fig. 2a. We also calculated the standard deviation of the mag-
netic field time series for each 12 second interval and show them in panel b of Fig. 2. The green lines on panels a and 
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Figure 1. Magnetic field strength as a function of time from periapsis for five consecutive passes during 
Venus Express aerobraking period. The 10 min data interval is corresponding to an spacecraft trajectory from 
over 400 km altitude to periapsis around 130 km altitude and back to over 400 km altitude as shown in the 
lowest panel. Periapsis altitude for these orbits ranged from 129.7 to 130.7 km and solar zenith angle from 93.6° 
to 95.3°. The 140-km crossing is marked on each panel, and all 5 crossings marked on the lower panel.

Figure 2. Altitude profiles of magnetic field strength panel (a) and fluctuation amplitude panel (b) and their 
ratio panel (c). Sixty-six profiles from 33 passes during June 6 to July 12, 2014, when the Venus Express periapsis 
altitude was below 150 km, are displayed. The field strength data shown in left panel is 1 second resolution and 
the magnetic field fluctuation δ B is indicated as the standard deviation of the field in 12 second bin. The green 
lines in panels (a,b) are medians. The line in panel c is the ratio of these medians.
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b show the median field strength and fluctuation amplitude at each altitude. Panel c shows the ratio of the median 
short period fluctuation amplitude to the median field strength. The median magnetic field strength decreases with 
decreasing altitude from 150 to 140 km altitude, where lies the peak density of the ionosphere9,10. Below this altitude, 
the median field does not decrease. The short period fluctuation amplitude continues to drop to close to 130 km 
altitude, as emphasized in panel c, that shows the ratio of the fluctuation amplitude to the field strength.

The leveling off of the median field at the constant value near 7 nT at 140 km altitude is to be expected because 
this is the lowest level at which we expect strong electric currents to flow. At high altitudes, the spacecraft can 
cross current layers between regions of varying magnetic field directions and magnitudes but in the region below 
140 km, the magnetic field is essentially derivable from solely a scalar potential since no current layers are present 
here. This observation is consistent with the earlier PVO-era models constructed to simulate the magnetic field 
down to an altitude of 120 km13,14.

The field strength below 140 km altitude has an average of 6.5 nT and median of 6.4 nT, and the field fluctu-
ation δ B has an average of 1.3 nT and median of 1.1 nT. This small and quiet polar atmospheric magnetic field, 
which we might further postulate is similar at the surface, has implications for planetary magnetic sounding via 
magnetic induction. The magnetotelluric technique (MT) is a passive electromagnetic sounding technique that 
has been used to great success on Earth and Moon for exploring the subsurface geological structures15. It has also 
been proposed to use MT for subsurface sounding on Mars16,17 based on the large magnetic field fluctuations in 
the ionosphere18. Our finding of weak and quiet field in atmosphere at Venus will be most probably true for Mars, 
although Mars’ weaker ionosphere and crustal fields will introduce some differences. In both cases, any magne-
totelluric sounding would be best performed from landers rather than from balloons and airplanes. However, a 
method of using the magnetic fields draped through the ionosphere at low altitudes has recently been suggested8. 
Finally, we note that, at the small field strengths seen by VEX over such a small area and over a single pole, we 
cannot constrain further the Venus magnetic moment.
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