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Abstract Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification
by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed
deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features
have a negative spectral slope in the visible range, making it appear bluish with respect to the grey-toned
overall surface of Ceres. We calculate the drop height-to-runout length ratio of several flow features and
obtain a coefficient of friction of< 0.1: The results imply higher flow efficiency for flow features on Ceres
than for similar features on other planetary bodies with similar gravity, suggesting low-viscosity material.
The special association of flow features with impact craters could either point to an impact melt origin or to
an exogenic triggering of cryovolcanic processes.

1. Introduction

After orbiting asteroid Vesta between 2011 and 2012, NASAˈs Dawn spacecraft entered orbit around
dwarf planet Ceres in March 2015 [Russell et al., 2015]. The mission goals at Ceres are to characterize
the geology, elemental and mineralogical composition, topography, shape, and internal structure of
Ceres in order to understand its geological evolution [Russell and Raymond, 2011]. Smooth plains that
cover the interior of a number of impact craters are one of the most prominent geological features
on Ceres. Notable examples are Haulani, Kupalo, Ikapati, and Occator craters. Besides smooth plains,
the geology of these craters is characterized by ponded material, flows with lobate flow fronts, and pits.
Dawn Framing Camera (FC) data (monochrome and color ratio images) [Sierks et al., 2011] from the
high-altitude mapping orbit (HAMO), with a spatial resolution of 140m/pixel, and from the low-altitude
mapping orbit (spatial resolution of 35m/pixel), as well as a HAMO Digital Terrain Model (DTM) [Preusker
et al., 2016] (135m/pixel), were used to analyze smooth plains units and its associated features. A bluish
signature can be seen for all investigated features in the enhanced FC HAMO color mosaic of the filters
5 (956 nm), 2 (555 nm), and 8 (440 nm) [Pieters et al., 2016]. The potential presence of ice within Ceresˈ
crust [McCord and Sotin, 2005] raises the prospect of geological processes similar to those on differen-
tiated icy bodies [Thomas et al., 2005]. Pre-Dawn telescopic observations suggested some aqueous altera-
tion on Ceres, including the formation of clay-like materials [Rivkin et al., 2011] and possibly salts covered
by a regolith layer having only small-scale compositional variations [Castillo-Rogez and McCord, 2010;
McCord and Sotin, 2005]. Thermal models suggest that Ceres is at least partially differentiated and could
have undergone tectonic and cryovolcanic processes [Castillo-Rogez and McCord, 2010; McCord et al.,
2011]. Another possibility for the formation of flows on planetary bodies is impact melt. Impact melt nor-
mally occurs as lobate tongues of melt rocks near the crater rim or inside craters and is morphological
similar to terrestrial lava flows. In this paper, we will discuss both processes to explain the formation of
the flows on Ceres.
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2. Observations
2.1. Haulani

Haulani crater (Figure 1) exhibits interior smooth plains with flow features originating from a hummocky
elongated mountainous ridge in the center, ponding toward mass-wasting deposits of the rim. One example
exhibits a channel, stream lines, lobes, and a well-defined flow front (Figure 1b). The smooth crater floor is
laced by pits. Some pit crater chains in the northwestern part are oriented parallel to the rim [Krohn et al.,
2016]. The pits lack raised rims and are located on the crater floor, predominately in clusters. The largest
cluster is located north of the ridge with a maximum length of ~10 km and a maximum width of ~3.8 km.
Smaller clusters are circumferential to the ridge but are absent in the eastern part, where mass-wasting
deposits from the rim may have covered the pits. A small cluster of pits is located in the middle of the
prominent ridge flow. The pits range in size from ~35m (at the limit of resolution) to ~230m in diameter.

Figure 1. (a) Haulani crater. (b) Mountainous central region with flow (arrows). (c) Well-defined smooth lobes (arrows). (d) Three-dimensional view showing scarps
bounding multiple flows in the west. (e) Multiple flow stages (arrows). (f) Slope map showing a shallow crater flank interrupted by scarps. White box shows the
profile location. (g) Detailed view of multiple flows along the profile. Arrows mark streamlines around blocks. (h) Profile of flows showing a shallow crater flank.
(i) Enhanced color mosaic.
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Additional clusters of pits are detected in Haulaniˈs southeastern to western ejecta blanket. These pits reach a
maximum diameter of ~540m.

Haulani shows several flow features running from the crater rim outward to the surrounding area, covering
the preexisting surface. We can distinguish four types of flows: The first flow type (1) is defined by smooth
lobes with well-defined margins and a very smooth featureless surface (Figure 1c). The lobes follow local
depressions and range in length from 0.5 to 20 km and in width from 0.35 to 8.1 km. Most flows occur as
narrow lobes, but we also found dilated flows streaming around solid blocks. Some of the narrow lobes
contain channels following the flow direction. Additionally, flows near the crater rim show evidence for crack-
ing. This flow type is predominantly distributed on the western and eastern crater flank but is less common
on the northern crater flank. The second flow type (2) occurs as more viscous flows with a relatively smooth
surface. These flows show clear margins of multiple flow stages on top of each other and occur only on the
western crater flank, extending to a distance of up to 29 km from the rim and covering an area of about
945 km2 (Figures 1d and 1e). Figure 1h shows a shallow crater flank with no evidence of terraces which
had been overflowed by material. The third flow type (3) shows a very smooth but streaky surface with
smooth material. The flows are affected by small narrow channels. This type is located on the central ridge
flanks within Haulani as well as on the southern and northeastern crater flanks of Haulani. The last flow type
(4) shows a relatively smooth surface interrupted by knobs. This type is located close to the crater rim on the
northern and eastern crater flank of Haulani.

Haulani was formed on a topographic boundary. The eastern side is topographically elevated whereas the
western side is lower (Figure 1d). The western side is affected by a broken crater rim, showing thin rock layers
on the inner crater wall and multiple scarps, cracks, and shear zones outside the crater. The collapsed crater
rim merges into the type 2 flows. These flows are bound by steep scarps related to the broken crater rim.

2.2. Kupalo

The crater floor of Kupalo reveals different complex processes. Like Haulani, Kupalo has a central ridge with
lobate flow features, which seem to originate from the ridge crest. Furthermore, the ridge exhibits a smooth
dome-like structure superimposing the ridge material with younger flows (Figure 2b). A second ridge in the
south also exhibits some lobate flows running down to the crater floor as well as a dome-like structure. The
crater floor is covered with plains of smooth ponded material, which partly covers the mass-wasting deposits
originating from the steep crater walls in the north and east part. A huge lobate flow at the southwestern
floor seems to originate from the southern crater floor and extends toward the crater wall (Figure 2b).

The crater floor is associated with pit crater chains, clusters of pits, and cracks. The northern crater rim shows
some flows occurring inside and outside of the crater rim. They originated from small domes at the rim crest
(Figure 2f). Compared to other peaks on the crater floor, the domes are topographically higher and reveal a
conical shape with a very smooth surface.

The crater flanks contain smooth lobes with well-defined margins, ranging from 3.5 to 19 km in length and
from 0.8 to 3.2 km in width. Some flows contain channels in flow direction (Figure 2d). Like Haulani, Kupalo
was formed on a topographic boundary, showing a less intact crater rim with multiple fractures in the south
and west, which are bound by steep scarps (Figure 2c).

2.3. Ikapati

Ikapati impacted half into a topographic high and half into a possible ancient basin showing a sharp crater
rim in the north and east and a degraded one in the south and west (Figure 3c). Terraced mass-wasting mate-
rial, originating from the sharp rim, fills nearly half of the crater floor in northeast direction. The other half of
the crater floor consists of smooth material, interrupted by pitted terrain (Figure 3d), pit crater chains, and
cracks. Ikapati shows smooth plains (Figure 3f) at different topographic levels associated with pits and
well-defined lobate flow-like features that overran the degraded crater rim (Figure 3b). These flows originated
from the crater rim and ran radially outward. They occur as relatively short narrow channelized lobes.
Compared to the smooth plains material, the flows seem to be thicker and less smooth. The material forming
the plains ponded in depressions and smaller craters southwest of Ikapati and covers the preexisting surface.

2.4. Occator

The interior of Occator exhibits extended plains of ponded material. The plains material is superposed on the
mass-wasting deposits originating from the steep crater walls, leaving only the tops of the source blocks as
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Figure 2. (a) Kupalo crater. (b) Crater floor with dome-like structures and flows (white arrows) and an inner crater flow (black arrow). (c) Three-dimensional view
showing flows bound by scarps. (d) Well-defined smooth channelized lobes. (e) Enhanced color mosaic. (f) Domes with flows at crater rim.
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Figure 3. (a) Ikapati crater. (b) Flows override the SW rim (black arrow), closeup of channelized flow. (c) Three-dimensional view showing the topographic boundary.
(d) Smooth inner crater plains contain collapse pits (arrow). (e) Enhanced color mosaic. (f) Smooth plains inside the adjacent depression.
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isolated remnants and partly banking at the steep crater walls (Figure 4b). Toward the northeast, flows spread
out from the central region associated with a bright dome, which is affected by radial cracks (Figure 4g). The
center of Occator is dominated by bright material (Figure 4a) [De Sanctis et al., 2015; Nathues et al., 2015]. The
western part of the central region is topographically elevated. The eastern part, mostly covered by bright
material, is a depression with the small dome in its center (Figures 4c and 4h). The flows to the northeast
appear to originate from the central bright region and move slightly uphill, ponding against rim-related
mass-wasting deposits. These flows show at least three individual lobate flow surfaces superposed on each
other, indicating multiple flow events (Figures 4d and 4e). This implies either a feeding source through a vent
or a collapse of a bulged source region after it emptied.

Crater densities on Occatorˈs floor are lower than those on the ejecta blanket, indicating a postimpact forma-
tion age of the flows [Neesemann et al., 2016]. Occator shows radial extension cracks in its southwestern part,

Figure 4. (a) Occator crater. (b) Plains of ponded material cover mass-wasting deposits and pileup at crater walls (arrows). (c) DTM showing the profile location.
(d) Flows spread out from central white spot, and flow fronts collide with mass-wasting deposits; superimposed individual flows (arrows) indicate multiple flow
events. Box shows location of Figure 4e. (e) Detailed view of individual flows showing a ropey surface. (f) Profile of crater floor, showing the upward direction of
the flows. (g) Extension cracks extending from a hummocky area between flooded slumping blocks and spreading radially. (h) Higher stretch of bright dome showing
the cracks on top. (i) Enhanced color mosaic.
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extending from a hummocky area
between flooded slumping blocks
and propagating toward the north
(Figure 4g). The cracks are of different
widths and depths and are con-
nected by shallower perpendicular
ones. The central depression and
the other bright spots are also affec-
ted by cracks.

3. Discussion

The occurrence of flow features indi-
cates viscous material on the sur-
face. The ratio between fall height
and runout length (H/L) is an appro-
ximation of the coefficient of fric-
tion of sliding debris [Schuster and
Crandell, 1984] and is useful for a

comparison with flows on other planetary bodies [De Blasio, 2011; McEwen, 1989; Moore et al., 1999;
Singer et al., 2012].

We used the method of Schuster and Crandell [1984] to determine the potential vertical drop H by the mea-
suring of the relief between the top of the potential slide mass and some point in the valley below, using the
HAMODTM. For Lwemeasured the probable travel distance of the flows to the end of the lobe. In Figure 5 we
plot the H/L ratio of the Ceres flows as a function of runout length (a proxy for volume) along with data from
other planetary bodies. The plot shows that the H/L ratio of Cerean flows is smaller, and therefore, they had to
bemore mobile thanmost mass movements and debris flows from Iapetus. Cerean runout lengths are similar
to the terrestrial ones but even more mobile. Martian landslide emplacement is suggested to have about half
the runout efficiency of Earth due to gravitational effects on the yield strength of materials [McEwen, 1989] or
the absence of a lubricating pore liquid [Brunsden, 1979]. Similar conditions should apply on Ceres; however,
flows on Ceres are more efficient than on other planetary bodies. The low values of H/L< 0.1 are comparable
with terrestrial submarine landslides and mudflows [Hampton et al., 1996], as well as lava flows [Baloga et al.,
1995], and ice flows [Kietzig et al., 2010]. Impact melt may also reduce the coefficient of friction within mate-
rials. Impact melt has been described on other planetary bodies, like Mars [Carr et al., 1977], Earth [Osinski,
2004], the Moon [Bray et al., 2010; Shoemaker et al., 1968], Ganymede [Shoemaker et al., 1982], and Vesta
[Otto et al., 2013;Williams et al., 2013], as ejecta deposits with flow-like morphologies. Generally, impact melt
is lobate tongues of melt rocks that normally occur at the downslope margins near the crater rim or inside
craters and is similar to terrestrial lava flows [Bray et al., 2010; Denevi et al., 2012a]. Usually, impact melt is
located on only one part of the crater rim but can also be asymmetrically distributed around the crater
[Stopar, 2014]. Impact melt, as a fallback product of ejecta strictly follows gravity. It is possible that the plains
and flows in Haulani, Kupalo, Ikapati, and Occator are composed of impact melt, especially the smooth lobes
with well-defined margins in Haulani (Figure 1c).

On the other hand, many of the observed flows originated from distinct sources in the crater interior. In
Occator and Haulani, more than one lobate flow originated close to the center and moved outward toward
the walls. In Occator, these flows potentially originated from the central bright depression and appear to have
moved uphill (Figures 4c and 4f). As impact melt is a fallback product, it would follow the topography and the
flow fronts would have been formed in topographic lows, not higher than the source origin.

Thus, the topographic inverse behavior of flows in Occator indicates a feeding zone that pushes the flows for-
ward by supplying low-viscosity material and a posterior collapse of the dome in the central region, possibly
due to a discharge of a subsurface reservoir [Jaumann et al., 2016]. Furthermore, the results of De Sanctis et al.
[2016] show that the bright spots within Occator predominantly consist of carbonates, a different material
than the adjacent material, which predominantly consist of phyllosilicates. Such carbonates have also been

Figure 5. Plot of Cerean flows height over length (H/L) versus runout length,
along with data of mass movements from other planetary bodies. The
smaller the H/L ratio, the more mobile are the flows. Therefore, flows on
Ceres are more efficient than on other planetary bodies.
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detected in the plumes of Enceladus [Postberg et al., 2011], suggesting an endogenic origin and not an impact
melt origin.

Additionally, Haulani reveals multiple flow stages on the western crater flank interrupted by sharp scarps.
Generally, flow-like morphologies in the ejecta are thought to be a result of either an involvement of volatiles
or gases, deceleration when the ejecta motion interacts with the local topography, or post emplacement
ground flow [Boyce et al., 2010; Bray et al., 2010; Carr et al., 1977]. A formation of multiple flow stages due
to material overflowing terraces would reveal a stair stepped pattern in the profile (Figure 1h). But the overall
morphology of Haulaniˈs western crater flank shows a planar crater flanks. Liquid cryolava features can be
produced by heating [Cassen et al., 1979] or by a release of material from a liquid subsurface layer [Tobie
et al., 2010]. Ascent and emplacement of cryolava could be due to compositional buoyancy [Croft et al.,
1988]. A liquid ammonia-water mixture has a similar density to water ice [Hargitai et al., 2014] and can be
erupted by large-scale tectonic stress patterns like subsurface pressure gradients associated with topography
[Mitri et al., 2008]. Moreover, cryolava could also be due to an overpressurization of liquid cryomagma cham-
bers (fluid reservoirs of water ice) in an ice lithosphere [Fagents, 2003; Showman et al., 2004]. Additionally, the
observation of pits in all four craters indicates a volatile rich material. On Mars and Vesta, pits are thought to
be formed through degassing of volatile-bearing material heated by the impact [Boyce et al., 2012; Denevi
et al., 2012b]. The pits on Ceres are also supposed to be the result of rapid postimpact outgassing of hydrated
salts or ground ice [Sizemore et al., 2016].

Recent observations by Dawn suggest that Ceres is a weakly differentiated body with a shell dominated by an
ice-rock mixture [Fu et al., 2015] and ammoniated phyllosilicates [De Sanctis et al., 2015]. Furthermore,
Neumann et al. [2016] developed a thermal model that shows hydrated salts could be warm enough to be
mobile at a depth of 1.5–5 km and could explain the buoyancy of ice and salt-enriched crustal reservoirs.
Thus, impacts into such reservoir could have triggered mobility and formed cryovolcanic features, such as
the flows in Occator and Haulani.

Finally, the blue color of the plains and flow materials indicates significant differences to the reddish sur-
roundings, applying a material change. The material composing Ahuna Mons, a prominent domical feature
that may be related to upwelling material, shows the same spectral characteristics as the plains and flow
material, suggesting a common composition [Ruesch et al., 2016; Zambon et al., 2016 ]. Ruesch et al. [2016]
suppose that Ahuna Mons is composed of subsurface material. This supports the assumption that plains
and flow materials also originate from the subsurface and their release is triggered by impact [Jaumann
et al., 2016]. Although no water ice has been detected by VIR (Visible and Infrared Spectrometer) in the
vicinity of the discussed impact craters so far, it is still possible that water ice existed but sublimated quickly
after being exposed at the surface and might have caused the bluish color [Stephan et al., 2016]. However,
also differences in the grain size of phyllosilicates are in discussion to cause the blue color [Jaumann et al.,
2016; Stephan et al., 2016]. Extremely fine-grained ejecta material redeposited during the impact events could
also explain the smooth surfaces of the observed flow features.

Age determinations indicate that the bluish material is mainly associated with the youngest impact craters on
Ceres [Schmedemann et al., 2016]. Thus, the bluish craters seem to be one of the youngest geologic features
on Ceres.

4. Conclusion

The compositional differences of the observed flows, and their discrete feeding sources, suggest a cryovolca-
nic origin. The correlation of such flow features with impact craters indicates an impact triggered release of
subsurface material or hydrothermal processes triggered by impact heat. Crustal material enriched in
hydrated salts, either as part of a subsurface layer or accumulated in smaller local reservoirs within the crust
at different depths, could be mobilized by tectonic weakening and/or by impacts. Another possible emplace-
ment scenario is the formation of subsurface reservoirs enriched in salt-bearing components driven upward
by density/temperature inhomogeneity. A possible example for such amechanism is the tectonic structure at
the southern part of Occator, where a pattern of cracks indicates breaking of the plains material by upwelling
and the partly polygonal arrangements suggest formation by dehydration. Although we see impact melt
structures, e.g., smooth well-defined flows around Haulani, Ikapati, and Kupalo, the plains in Occator and
the viscous flows on Haulaniˈs western crater flank are more likely the result of impact triggered cryovolcanic
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activity. Impacts hitting the surface above subsurface reservoirs enriched with hydrated salts will mobilize
these compounds, produce additional hydration of salts, and release them as flows. The observed craters
may have tapped into salt-rich crustal reservoirs, triggering the mobility of material and formed the cryovol-
canic features. The material might have sustained long after the impact, as indicated by the significantly
younger age of the plains and flow materials.

Thus, due to the similarity of impact melt structures and cryolava flows, we assume that we have a coexis-
tence of both types on Ceres.

References
Baloga, S., P. D. Spudis, and J. E. Guest (1995), The dynamics of rapidly emplaced terrestrial lava flows and implications for planetary

volcanism, J. Geophys. Res., 100, 24,509–24,519, doi:10.1029/95JB02844.
Boyce, J. M., N. Barlow, P. Mouginis-Mark, and S. Stewart (2010), Rampart craters on Ganymede: Their implications for fluidized ejecta

emplacement, Meteor. Planet. Sci., 45, 638–661.
Boyce, J. M., L. Wilson, P. J. Mouginis-Mark, C. W. Hamilton, and L. L. Tornabene (2012), Origin of small pits in Martian impact craters, Icarus,

221(1), 262–275.
Bray, V. J., et al. (2010), New insight into lunar impact melt mobility from the LRO camera, Geophys. Res. Lett., 37, L21202, doi:10.1029/

2010GL044666.
Brunsden, D. (1979), Mass movements, in Process in Geomorphology, edited by C. E. Embleton and J. B. Thornes, pp. 130–186, Edward Arnold,

London.
Carr, M. H., L. S. Crumpler, J. A. Cutts, R. Greeley, J. E. Guest, and H. Masursky (1977), Martian impact craters and emplacement of ejecta by

surface flow, J. Geophys. Res., 82, 4055–4065, doi:10.1029/JS082i028p04055.
Cassen, P., R. T. Reynolds, and S. J. Peale (1979), Is there liquid water on Europa, Geophys. Res. Lett., 6, 731–734, doi:10.1029/

GL006i009p00731.
Castillo-Rogez, J. C., and T. B. McCord (2010), Ceresˈ evolution and present state constrained by shape data, Icarus, 205, 443–459.
Croft, S. K., J. I. Lunine, and J. Kargel (1988), Equation of state of ammonia-water liquid: Derivation and planetological applications, Icarus, 73,

279–293.
De Blasio, F. V. (2011), Introduction to the Physics of Landslides, 1st ed., Springer, Netherlands.
De Sanctis, M. C., et al. (2015), Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres, Nature, 528, 241–244.
De Sanctis, M. C., et al. (2016), Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres, Nature, 53, 54–57.
Denevi, B. W., et al. (2012a), Physical constraints on impact melt properties from Lunar Reconnaissance Orbiter Camera images, Icarus, 219,

665–675.
Denevi, B. W., et al. (2012b), Pitted terrain on Vesta and implications for the presence of volatiles, Science, 338, 246–249.
Fagents, S. A. (2003), Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective, J. Geophys. Res., 108(E12), 5139,

doi:10.1029/2003JE002128.
Fu, R. R., A. Ermakov, M. T. Zuber, and H. H. Bradford (2015), The global scale relaxation state of Ceres, paper presented at AGU Fall Meeting.
Hampton, M. A., H. J. Lee, and J. Locat (1996), Submarine landslides, Rev. Geophys., 34, 33–59, doi:10.1029/95RG03287.
Hargitai, H., Á. Kereszturi, and M. Choukroun (2014), Cryovolcanic features, in Encyclopedia of Planetary Landforms, edited by H. Hargitai and

Á. Kereszturi, pp. 1–10, Springer, New York.
Jaumann, R., et al. (2016), Age-dependent morphological and compositional variations on Ceres, Proc. Lunar Planet. Sci. Conf. 47th, p. 1455.
Kietzig, A.-M., S. G. Hatzikiriakos, and P. Englezos (2010), Physics of ice friction, J. Appl. Phys., 107, 081101, doi:10.1063/1.3340792.
Krohn, K., et al. (2016), Channels and cryogenic flow features on Ceres, Proc. Lunar Planet. Sci. Conf., p. 2001.
McCord, T. B., and C. Sotin (2005), Ceres: Evolution and current state, J. Geophys. Res., 110, E05009, doi:10.1029/2004JE002244.
McCord, T. B., J. Castillo-Rogez, and A. Rivkin (2011), Ceres: Its origin, evolution and structure and Dawnˈs potential contribution, Space Sci.

Rev., 163, 63–76.
McEwen, A. S. (1989), Mobility of large rock avalanches: Evidence from Valles Marineris, Mars, Geology, 17, 1111–1114.
Mitri, G., A. P. Showman, J. I. Lunine, and R. M. C. Lopes (2008), Resurfacing of Titan by ammonia-water cryomagma, Icarus, 196, 216–224.
Moore, J. M., et al. (1999), Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission,

Icarus, 140, 294–312.
Nathues, A., et al. (2015), Sublimation in bright spots on (1) Ceres, Nature, 528, 237–240.
Neesemann, A., T. Kneissl, N. Schmedemann, S. H. G. Walter, G. G. Michael, S. van Gasselt, H. Hiesinger, R. Jaumann, C. Raymond, and

C. T. Russell (2016), Size-frequency distributions of km to sub-km sized impact craters on Ceres, Proc. Lunar Planet. Sci. Conf, p. 2936.
Neumann, W. O., D. Breuer, and T. Spohn (2016), Differentiation of Ceres and her present-day thermal state, Proc. Lunar and Planetary

Science Conference, p. 2307.
Osinski, G. R. (2004), Impact melt rocks from the Ries structure, Germany: An origin as impact melt flows?, Earth Planet. Sci. Lett., 226, 529–543.
Otto, K., et al. (2013), Mass wasting features in Vestaˈs south polar basin Rheaslilvia, J. Geophys. Res. Planets, 118, 2279–2294, doi:10.1002/

2013JE004333.
Pieters, C. M., et al. (2016), Surface processes and space weathering on Ceres, Proc. Lunar Planet. Sci. Conference, p. 1383.
Postberg, F., J. Schmidt, J. Hillier, S. Kempf, and R. Srama (2011), A salt-water reservoir as the source of a compositionally stratified plume on

Enceladus, Nature, 474, 620–622.
Preusker, F., F. Scholten, K.-D. Matz, S. Elgner, R. Jaumann, T. Roatsch, S. P. Joy, C. A. Polanskey, C. A. Raymond, and C. T. Russell (2016), Dawn at

Ceres—Shape model and rotational state, Proc. Lunar and Planetary Science Conference, p. 1954.
Rivkin, A. S., J.-Y. Li, R. E. Milliken, L. F. Lim, A. J. Lovell, B. E. Schmidt, L. A. McFadden, and B. A. Cohen (2011), The surface composition of Ceres,

Space Sci. Rev., 163, 95–116.
Ruesch, O., et al. (2016), Ahuna Mons: A geologically-young extrusive dome on Ceres, Proc. Lunar Planet. Sci. Conf., p. 2279.
Russell, C. T., and C. A. Raymond (2011), The Dawn mission to Vesta and Ceres, Space Sci. Rev., 163, 3–23.
Russell, C. T., et al. (2015), Dawn arrives at Ceres: Results of the survey orbit, European Planet. Sci. Congress, 10.
Schmedemann, N., R. J. Wagner, G. Michael, B. A. Ivanov, T. Kneissl, A. Neesemann, H. Hiesinger, R. Jaumann, C. A. Raymond, and C. T. Russell

(2016), Crater scaling on weak targets, from Ceres to Icy satellites, Proc. Lunar Planet. Sci. Conf., p. 2236.

Geophysical Research Letters 10.1002/2016GL070370

KROHN ET AL. CRYOVOLCANISM ON DWARF PLANET CERES 12,002

Acknowledgments
We thank the Dawn team for the
development, cruise, orbital insertion,
and operations of the Dawn spacecraft
at Ceres. Portions of this work were
performed at the DLR Institute of
Planetary Research, at the Jet
Propulsion Laboratory (JPL) under
contract with NASA. Dawn data are
archived with the NASA Planetary
Data System (http://sbn.pds.nasa.gov/).
K. Krohn is supported by the Helmholtz
Association (HGF) through the research
Helmholtz Postdoc Program.

http://doi.org/10.1029/95JB02844
http://doi.org/10.1029/2010GL044666
http://doi.org/10.1029/2010GL044666
http://doi.org/10.1029/JS082i028p04055
http://doi.org/10.1029/GL006i009p00731
http://doi.org/10.1029/GL006i009p00731
http://doi.org/10.1029/2003JE002128
http://doi.org/10.1029/95RG03287
http://doi.org/10.1063/1.3340792
http://doi.org/10.1029/2004JE002244
http://doi.org/10.1002/2013JE004333
http://doi.org/10.1002/2013JE004333
http://sbn.pds.nasa.gov/


Schuster, R. L., and D. R. Crandell (1984), Catastrophic debris avalanches from volcanoes, paper presented at IV International Symposium on
Landslide Proceedings, Toronto.

Shoemaker, E. M., R. M. Batson, H. E. Holt, E. C. Morris, J. J. Rennilson, and E. A. Whitaker (1968), Television observations from Surveyor 3,
J. Geophys. Res., 73, 3989–4043, doi:10.1029/JB073i012p03989.

Shoemaker, E. M., B. K. Lucchitta, D. E. Wilhelms, J. B. Plescia, and S. W. Squyres (1982), The geology of Ganymede, in Satellites of Jupiter,
edited by D. Morrison, pp. 435–520, Univ. of Arizona Press, Tucson, Ariz.

Showman, A. P., I. Mosqueira, and J. W. Head (2004), On the resurfacing of Ganymede by liquid water volcanism, Icarus, 172, 625–640.
Sierks, H., et al. (2011), The Dawn Framing Camera, Space Sci. Rev., 163, 263–327.
Singer, K. N., W. B. McKinnon, P. M. Schenk, and J. M. Moore (2012), Massive ice avalanches on Iapetus mobilized by friction reduction during

flash heating, Nat. Geosci., 5(8), 574–578.
Sizemore, H. G., et al. (2016), Preliminary constraints on the volumetric concentration of shallow ground Ice on Ceres from geomorphology,

Proc. Lunar and Planetary Science Conference, p. 1628.
Stephan, K., et al. (2016), The nature of Ceresˈ bluish material, AGU Fall Meeting Abstracts, 43, 2122.
Stopar, J. D. (2014), Impact melt flows, in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi, pp. 1–9, Springer,

New York.
Thomas, P. C., J. W. Parker, L. A. McFadden, C. T. Russell, S. A. Stern, M. V. Sykes, and E. F. Young (2005), Differentiation of the asteroid Ceres as

revealed by its shape, Nature, 437, 224–226.
Tobie, G., et al. (2010), Surface, subsurface and atmosphere exchanges on the satellites of the outer Solar System, Space Sci. Rev., 153,

375–410.
Williams, D. A., et al. (2013), Lobate and flow-like features on asteroid Vesta, Planet. Space Sci., 103, 24–35.
Zambon, F., et al. (2016), Mineralogy of Ahuna Mons, paper presented at DPS 48/EPSC 11, Pasadena, Calif.

Geophysical Research Letters 10.1002/2016GL070370

KROHN ET AL. CRYOVOLCANISM ON DWARF PLANET CERES 12,003

http://doi.org/10.1029/JB073i012p03989


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


