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Abstract The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of
reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on
8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure
anisotropy-weighted Walén analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing
magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in
ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust
was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in
the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2
observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall
fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the
magnetopause CS.

1. Introduction

The Earth’s magnetopause flanks constantly experience a variable flow shear between stagnant or weakly drift-
ing plasma in the magnetosphere and a strong and variable antisunward plasma flow in the adjacent magne-
tosheath due to the shocked solar wind. Certain conditions of plasma flow shear and directions of the ambient
magnetic field (B) across the low-latitude magnetopause current sheet (CS) allow the Kelvin-Helmholtz (KH)
instability [e.g., Chandrasekhar, 1961;Miura and Pritchett, 1982] to grow and formmagnetopause surface waves
that propagate in the antisunward direction of the magnetosheath flow [e.g., Kivelson and Chen, 1995]. The
wave amplitude is expected to grow and generate rolled-up flow vortices in the nonlinear phase of its evolution
along the flank [e.g., Fairfield et al., 2000; Hasegawa et al., 2004, 2006; Foullon et al., 2008; Nakamura et al., 2013].
The KH instability can readily grow if B is perpendicular to the KH wave vector k on either side of the magne-
topause. This is expected to occur, as corroborated by observations, if the interplanetary magnetic field (IMF)
has a significant component along the ZGSE axis [e.g., Kokubun et al., 1994].

A finite component of B along the flow shear direction will exert a stabilizing force and lower the KH growth.
This in-plane BL may be wrapped up within evolving KH vortices, where it may be further compressed and
form intense CS which may become sites of magnetic reconnection [e.g., Nykyri and Otto, 2001; Nakamura
and Fujimoto, 2005; Nykyri et al., 2006]. A magnetic field with a dominant out-of-plane BM component and
oppositely directed in-plane BL components across the magnetopause may also form intense CS along the
sunward facing, trailing edges of KH waves where the magnetosheath flow acts to compress the magneto-
pause [e.g., Pu et al., 1990; Knoll and Chacón, 2002; Nakamura et al., 2008, 2013]. They form at an early linear
phase of the KH evolution and persist into the nonlinear stage of rolled-up KH vortices [Nakamura et al.,
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2013]. Hasegawa et al. [2009] reported the first indication of an in-planemagnetic reconnection exhaust from an
E×B observation across a ~240 km wide KH-related trailing CS behind the duskside terminator. However, the
3 s duration of this CS was too brief to confirm the presence of a plasma exhaust with Cluster measurements.

The Magnetospheric Multiscale (MMS) mission [Burch et al., 2015] with its unprecedented high-resolution ion
(150ms) and electron (30ms) measurements [Pollock et al., 2016], magnetic fields [Russell et al., 2014], and
electric fields [Torbert et al., 2014; Ergun et al., 2014; Lindqvist et al., 2014] allows for the first in-depth analysis
of intense CS forming at the trailing edges of KH-related surface waves in a strong guide-magnetic field, in
order to explore whether they support magnetic reconnection. In this letter we provide the first direct
evidence in agreement with KH-related reconnection exhausts at narrow, low-field shear CS with durations
as low as 1.2 s across a duskside magnetopause on 8 September 2015. We also report evidence for the

Figure 1. MMS-1 observations are shown 09:00–11:50 UT (left, fast survey) and 10:44–11:04 UT (right, burst mode) on 8 September 2015. The figure displays omni-
directional energy-time spectrograms for (a) ions and (b) electrons, (c) Bmagnitude, (d) GSE components of B, (e) GSE components of the ion velocity, (f) ion plasma
number density (Ni), (g) average ion temperature (TiAVG), (h) sum of the magnetic pressure Pb = B2/2 μ0, ion plasma pressure Pi =NikBTiAVG, and electron plasma
pressure Pe =NekBTeAVG (black: fast survey; red: burst), and (i) total plasma β. Vertical dashed lines (Figure 1, right) highlight the two CS reported in detail in this letter.
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presence of highly asymmetric Hall magnetic and electric fields [e.g., Sonnerup, 1979; Terasawa, 1983;
Pritchett, 2001; Drake et al., 2009; Eastwood et al., 2010] consistent with a strong guide-field and a weak
plasma density asymmetry across the magnetopause CS.

2. Overview of MMS Observations on 8 September 2015

The MMS mission was launched on 12 March 2015 into a 12 RE apogee elliptical orbit in the equatorial plane
to explore where magnetic reconnection occurs in the Earth’s magnetosphere and what factors influence
this universal plasma physics process. The initial phase of the mission began on 1 September 2015 [Fuselier
et al., 2014] to target the dayside magnetopause with short periods of burst data collected at selected
magnetopause CS by a team of MMS Scientists-In-The-Loop (SITL). This letter examines a flankmagnetopause
period when an interplanetary flux rope encountered the Earth on 7–9 September 2015 with a core IMF
BGSE = (13.7 ± 0.9,�2.7 ± 1.6,15.6 ± 0.6) nT. The MMS satellites were moving across the low-latitude boundary
layer and into the magnetosheath at approximately (x,y,z)GSE = (4.9,9.2,0.1) RE or 15.7 h magnetic local time
(MLT), with an interspacecraft tetrahedron separation of 150–185 km when the magnetosphere was immersed
within this flux rope.

Figure 1 (left) shows MMS-1 fast survey observations between 09:00 and 11:50 UT on 8 September 2015.
Energy-time spectrograms of ions and electrons show that MMS was inside the magnetosphere proper
until 09:21:24 UT (first vertical dotted line) characterized by a low plasma density and high ion tempera-
ture, slow average ion velocity, and a geomagnetic field BGSE = (20,5,65) nT. This was followed by a 2 h long
interval of boundary layer plasma. Significant variations were observed in the ion temperature and B
during the last ~80min of this period between 10:07:30 UT (second vertical line) and 11:27:40 UT (third
vertical line) when MMS exited into the cold, dense magnetosheath plasma. The first 5min of the
magnetosheath is consistent with a low-β plasma depletion layer (PDL) [e.g., Wang et al., 2003] with a
weakly compressed northward BGSE = (27,�8,70) nT and a lower plasma density coincident with a faster
VGSE = (�278,223,10) km/s flow than what is observed after 11:32:50 UT (fourth vertical line) when the flow
slowed down to a steady VGSE = (�251,214,�12) km/s with a typically higher plasma density and an aver-
age BGSE = (25,�12,66) nT.

The boundary layer can be separated into an inner region (09:21:24–10:07:30 UT) with variable, but overall
stagnant flows VGSE = (�8± 48,5 ± 61,3 ± 32) km/s, plasma density N= 6± 3 cm�3, and BGSE = (15 ± 5,6
± 8,67 ± 5) nT, and an outer region (10:07:30–11:27:40 UT) characterized by variable, magnetosheath-like flow
VGSE = (�161 ± 56,154 ± 48,50 ± 33) km/s, and N= 13± 4 cm�3, which is dominated by many narrow CSs with
a major ByGSE rotation of BGSE = (15 ± 9,0 ± 14,73 ± 7) nT, with values given as means and standard deviations.
The MMS-SITL team made burst mode selections for the extended period 10:07:04–11:27:34 UT to allow
further analysis of the sharp CS in this highly variable boundary layer region. The narrow CSs were almost
exclusively encountered as MMS transitioned from a high-temperature boundary layer plasma of the magne-
tosphere into the cold magnetosheath as illustrated in Figure 1 (right) for a 20min period of burst data. Two
vertical dotted lines highlight the exhaust-related CS presented in this letter.

A power spectrum of the continuous TiAVG burst observations (not shown) resulted in a dominant peak
for all four MMS spacecraft at 15.8mHz (T = 63 s). The nature of this periodic magnetopause surface
wave that persists for at least 80min can be explored using linear KH instability growth theory
[Chandrasekhar, 1961]

γ2 ¼ ρ1ρ2= ρ1 þ ρ2ð Þ2 k · U1 � U2ð Þ½ �2– k · B1ð Þ2 þ k · B2ð Þ2
h i

=μ0 ρ1 þ ρ2ð Þ (1)

Equation (1) states the growth rate γ in terms of quantities evaluated in the magnetosphere (1) and magne-
tosheath (2) where μ0 is the permeability of free space, ρ is the proton mass density, B is the magnetic field,
U is the plasma flow velocity, and k= (kcosθ,0,ksinθ) is the direction of wave propagation with amplitude
k= 2π/λ in a global boundary normal coordinate system (x,y,z). This system is defined such that y is the
direction normal to the unperturbed magnetopause, x is positive toward the Sun along the magnetopause,
and z completes the orthogonal system. Here θ is the angle between k and the xy plane of the flow shear.
Equation (1) may be rearranged [Nakamura et al., 2006] as
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Figure 2. (a-j) MMS-1 burst observations in local boundary normal LMN coordinates at 10:44:29–10:44:38 UT on 8 September 2015. MMS-1 encountered a CS
between 10:44:32.92 UT (first line) and 10:44:34.11 UT (third line). The panels show (a) ion and (b) electron energy-time spectrograms, (c) TiAVG, (d) Ni (black) and
Ne (red), (e) BL (black) and BN (blue), (f) BM (black) and |B| (red), (g) perpendicular VeLperp (blue), (E × B)L (black), ViL (pink), and Walén predictions VL1 = VL01 +ΔVL1
(red) and VL2 = VL02 +ΔVL2 (cyan), (h) ViM (black) and ViN (blue), (i) L components of the perpendicular electron velocity (VeLperp, blue) and parallel electron velocity
(VeL||, black) with vertical bars indicating times of BM gradients, and (j) measured electric field EN (black), �(Vi × B)N (red), and �(Ve × B)N (blue). (k-s) Color-coded
MMS burst observations with optimum time delays to MMS-1 shown in seconds. The panels show (k) TiAVG, (l) Ne, (m) BL, (n) BM, (o) BN, (p) observed ViL at MMS-1
(black) and MMS-4 (blue) with Walén predictions using MMS-4, (q) ViL, (r) VeL, and (s) EN. Vertical lines at 10:44:32.45 and 10:44:34.38 UT mark the MMS-4 CS. All
components are shown using LGSE = [�0.290,0.956,�0.030], MGSE = [0.224,0.099,0.970], and NGSE = [0.930,0.275,�0.243].
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γ=kð Þ2 ¼ ρ1ρ2= ρ1 þ ρ2ð Þ2 ΔUx cosθ þ ΔUz sinθð Þ2

– B1x cosθ þ B1z sinθð Þ2 þ B2x cosθ þ B2zsinθð Þ2
h i

=μ0 ρ1 þ ρ2ð Þ
(2)

and evaluated for the range of propagation angles that could result in a positive KH growth given the para-
meters measured on the two sides of the magnetopause. Five global boundary normal systems were
examined, including a maximum flow shear system with x=�(U2�U1)/|U2�U1|, a cross product normal
system (cf. supporting information), and three standard systems [Fairfield, 1971; Petrinec et al., 1991; Roelof
and Sibeck, 1993]. We averaged MMS fast survey measurements of ρ1 =mpN1, B1, and U1 from an inner
boundary layer interval at 09:45:12–09:45:59 UT and magnetosheath measurements of ρ2 =mpN2, B2, and
U2 from a PDL-like interval at 11:27:40–11:28:40 UT (see Table S3 in the supporting information). The flow
shear ΔU=U1�U2 and B were such that all systems resulted in (γ/k)2> 0 for θ = θ0 ±Δθ with Δθ ~17° (see
Figure S2 in the supporting information). A maximum wave growth γ/k> 131 km/s was obtained for a coor-
dinate system-dependent angle θ0 with γ/k= 135 km/s for the maximum shear system.

3. MMS Burst Mode Observations of Two Ion-Scale Current Sheets

A total of 42 CS (cf. supporting information) were analyzed for evidence of reconnection exhausts in a local LMN
coordinate system as MMS transitioned from the boundary layer into the magnetosheath using burst data and
the pressure anisotropy-weighted Walén relation based on tangential momentum balance [Paschmann et al.,
1986]. The boundary normal to each CSwas estimated usingMMS-1 observations and a local cross product nor-
mal N=B1 ×B2/|B1 ×B2| where B1 and B2 are the 2 s average magnetic fields on either side of the magneto-
pause CS. The guide-field M direction is defined as the unit vector of the cross product between N and the
maximum variance direction of B [Sonnerup and Scheible, 1998] across the CS. L=M×N completes the system.
The Walén relation is stated as VL=VL0 +ΔVL where VL0 is the L component of the reference velocity on either
side of the CS, ΔVL(t) =±[BL(1� α)� BL0(1� α0)]/[ρ0μ0(1� α0)]

0.5, and α= (P||� P
┴
)μ0/B

2 between the parallel
and perpendicular ion plasma pressures. The ΔVL expression is applied separately from the two external sides
(subscript 0) of a CS toward a joint center location due to the presence of similar plasma density and field
strength across the CS. The choice of ± sign depends on whether BL and VL variations are in phase or not across
the exhaust boundary. The remainder of this section is devoted to detailed observations recorded across two of
the 22 CS with reconnection exhaust signatures. The mean directions of the three L,M, N unit vectors in these
22 cases are NGSE = [0.92,0.31,�0.22], LGSE= [�0.34,0.94,�0.10], andMGSE = [0.13,0.11,0.99].

Figures 2a–2j show MMS-1 burst observations during a 9 s interval that straddles the boundary layer
(N1 = 9 cm�3) and the magnetosheath (N2 = 18 cm�3) with an average Li= c/ωpi = 65 km ion inertial length,
where c is the speed of light andωpi = (N0e

2/mpε0)
1/2. A narrow 1.3 s wide CS is centered at 10:44:33.79 UT dur-

ing which B displayed a rotation from BL1 =32nT to BL2 =�34nT. The BL rotation coincides with a weak but
positive normal field BN=1.3 nT. MMS-1 measured a steady VN0=�122 km/s and VL0 = 217 km/s external ion
flow on either side of the CS, suggesting a mere 2.4 Li normal width of the CS. A relatively weak and negative
ΔViL =�100 km/s ion jet was recorded across the CS relative to VL0, which is ~110 km/s slower than the jet speed
predicted by the Walén relation and the speed observed by (E×B)L and the L component of the perpendicular
electron velocity, VeLperp. The out-of-plane BM field experienced an asymmetric, bipolar perturbation that con-
sisted of a wide ΔBM=7.8 nT increase relative to BM1 = 71nT on the magnetospheric side followed by a 23 km
wide sub-ion scale (190ms duration) ΔBM=�4.4 nT depression relative to BM2 = 74nT on the magnetosheath
side. The BM depression coincides with a fast VeLperp> 0 and a normal electric field EN=�31mV/m. This
ΔEN=�19mV/m electric field relative to a background EN2 =�13mV/m was recorded by the electron
�Ve ×B electric field but not by the ion �Vi ×B. The bipolar ΔBM signature is in qualitative agreement with
an asymmetric Hall B supported by in-plane Hall electron currents in this strong BM/BL=2.2 guide-field.
Figure 2i indicates where the in-plane projection of the field-aligned electron velocity (VeL||) helps support
the three individual BM gradients [Eriksson et al., 2015]. The asymmetric ΔEN< 0 electric field is consistent with
a highly localized Hall electric field [cf. Drake et al., 2009, Figure 1c)] on the magnetosheath side.

Figures 2k–2s compare these MMS-1 measurements with those recorded by the neighboring MMS space-
craft with appropriate time delays. MMS-2, separated by [ΔsL,ΔsM,ΔsN] = [10.5,�153.6,�5.1] km from MMS-1
and by 0.03 s in time, recorded nearly identical signatures as MMS-1 including an enhanced ΔEN< 0 of
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weaker magnitude toward the magnetosheath side of the exhaust. These similarities and the ~2.4 Li
separation along the guide-field suggest a roughly two-dimensional exhaust over the MMS tetrahedron.
The MMS-3,4 pair observed important differences from the MMS-1,2 pair. This includes a wider 3.6 Li
exhaust as indicated by ViL and BL over Δt= 1.9 s. They also observed a wider ΔBM depression and a
faster ΔViL =�125 km/s jet, but no Hall-related ΔEN< 0. MMS-3 was separated by Δt13 = 0.87 s in time
and [ΔsL,ΔsM,ΔsN] = [�127.4,�77.4,�86.5] km from MMS-1. MMS-4 was separated by Δt14 = 1.41 s and
[ΔsL,ΔsM,ΔsN] = [59.1,�86.3,�149.3] km from MMS-1. The deHoffmann-Teller (HT) velocity [Khrabrov and

Figure 3. (a–j) MMS-1 burst observations in local LMN at 11:01:13–11:01:25 UT on 8 September 2015 (cf. Figure 2). First and last vertical dotted lines at 11:01:18.25
and 11:01:20.45 UT mark the MMS-1 CS. (k–s) Color-codedMMS burst observations for optimum time delays relative to MMS-1. Same panels as Figure 2 except ViL for
all spacecraft and Walén prediction at MMS-4 (Figure 3p), VeL and ViL at MMS-3 with negative Walén jet prediction at MMS-3 (Figure 3q), VeL and ViL at MMS-4 with
positive Walén jet prediction at MMS-4 (Figure 3r), and MMS-3 comparison of VeL and E × BL (Figure 3s). Vertical lines mark the MMS-4 CS at 11:01:19.49–11:01:20.13
UT. All components are shown using LGSE = [�0.171,0.984,�0.057], MGSE = [0.253,0.100,0.962], and NGSE = [0.952,0.150,�0.266].
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Sonnerup, 1998] across the CS at MMS-1, VHT= [VHTL,VHTM,VHTN] = [174,70,�122] km/s, suggests that additional
corrections VHTLΔt in the negative L direction due to X line drift in the positive L direction, and their time delays
would putMMS-3,4 roughly 3–4 Li along the exhaust fromMMS-1,2. TheMMS-1,2 pair was thus closer to the X line
than the MMS-3,4 pair which explains a slower ion exhaust and the presence of asymmetric Hall electric fields.

Figure 3 (a–j) presents a narrow 2.2 s wide and highly bifurcated CS without a clear density enhancement at
11:01:19.84 UT as MMS-1 transitioned from a boundary layer (N1 = 7 cm�3, BL1 = 18 nT, BM1 = 72 nT) into the
magnetosheath (N2 = 17 cm�3, BL2 =�20 nT, BM2 = 76 nT) with an average Li=72 km. A fast positive exhaust
was present in ViL, VeLperp, and (E×B)L/B

2 at the CS with ViL in agreement with the Walén prediction. B was
dominated by the guide-field within this 5.3 Li wide exhaust where BL=�1.4 nT, while BN =�3.3 nT is consis-
tent with an exhaust in the positive L direction. The magnetosheath side was characterized by an additional
ΔBL= 18 nT compression of the adjacent background BL2 =�20 nT that coincided with a guide-field
ΔBM=�9 nT depression relative to the external guide-field BM2 = 76 nT. This ΔBM< 0 is not consistent with
a Hall field on the magnetosheath side of a positive L exhaust from a single X line, and there is only a weak
Hall-like ΔBM=�3 nT depression signature on the earthward side of the exhaust. Themeasured EN suggests a
broad, ΔEN> 0 electric field relative to�(Vi ×B)N during the weak ΔBM depression. ΔEN> 0 is consistent with
�(Ve ×B)N, confirming ΔBM=�3 nT and ΔEN> 0 as a weak Hall B and E. Figure 3i suggests that VeL|| is
qualitatively consistent with in-plane electron currents to support the individual BM gradients of the weak
Hall ΔBM depression and the stronger ΔBM=�9 nT on the magnetosheath side.

Figure 3 (k–s) shows the corresponding observations from the other spacecraft. MMS-2 again observed
nearly identical exhaust signatures as MMS-1 across this CS with a relative separation vector

Figure 4. Illustration of the NL-plane orientation of two KH-related trailing CSs centered at (bottom, left) ~10:44:33 UT and
(bottom, right) ~11:01:19 UT with xGSE to the right. Color-codedMMS trajectories are shown across two ion exhaust regions
(shaded). Asymmetric Hall BM fields are shown with field depressions (ΔBM< 0) as encircled crosses, and field enhance-
ments (ΔBM> 0) as encircled dots. Hall ΔEN fields are shown as red arrows. In-plane projections of the field-aligned
electron velocity (VeL||) are shown as blue arrows. The top schematic indicates the general location of these magnetopause
CSs on a KH wave train from BL> 0 (red arrows, boundary layer) to BL< 0 (blue arrows, magnetosheath). The actual
observations were separated by several KH-related CSs.
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[ΔsL,ΔsM,ΔsN] = [10.8,�155.7,0.0] km from MMS-1. MMS-3 and MMS-4, delayed by Δt13 = 0.51 s and
Δt14 = 0.99 s from MMS-1, did not observe an ion exhaust across the CS (Figure 3p), although they both
recorded a density enhancement. The absence of an ion exhaust is apparently related to the short 0.64 s
duration of this CS at MMS-4 with a ~110 km (1.5 Li) normal width. MMS-3 and MMS-4 were 3.9 Li and
3.6 Li closer to the X line, respectively, than MMS-1 based on VHT = [VHTL,VHTM,VHTN] = [304,104,�169] km/s
and their initial separations ΔsL =�128 km (MMS-3) and ΔsL = 44 km (MMS-4) from MMS-1. MMS-3 observed
a narrow, positive VeL electron jet (Figure 3q) on the BN< 0 side (Figure 3o) of the CS followed by a narrow,
negative VeL jet on the BN> 0 side of the CS, consistent with a Walén jet prediction. MMS-4 observed a more
variable VeL (Figure 3r) than MMS-3 across the CS. However, there was no evidence of a negative VeL jet. The
Walén relation rather indicates that MMS-4 may have observed a positive VeL jet on the BN< 0 side. These
observations suggest a scenario where MMS-3 and MMS-4 transitioned near an electron diffusion region
(EDR) along the negative L direction in a strong BM/BL=4 guide-field.

Figure 4 summarizes the MMS observations of Figures 2 and 3. MMS trajectories are based on the in-plane
VHT across each CS, while L separations are based on the tetrahedron, time delays, and VHTL. MMS-2 is pro-
jected onto the NL plane with a larger separation from MMS-1 for clarity. Figure 4 emphasizes along-track
observations of exhausts (shaded), ΔBM variations (circles) relative to the guide-field, VeL|| (blue arrows),
and EN=�(Ve ×B)N relative to –(Vi ×B)N (red arrows). VeL|| is in qualitative agreement with in-plane currents
to support the BM gradients [Eriksson et al., 2015]. The strong guide-field induces the observed Hall B asym-
metry with narrow ΔBM depressions shunted away from the CS toward the exhaust boundary [Eastwood et al.,
2010] with a similar response of the normal ΔEN [Drake et al., 2009; Eastwood et al., 2010]. It is unclear why
MMS-3 and MMS-4 did not observe ΔEN< 0 across the magnetosheath side of the exhaust boundary
at ~10:44:35 UT. The wide ΔEN> 0 observed by MMS-1 across the earthward side of the exhaust at
~11:01:18.5 UT is consistent with a trajectory skimming the exhaust boundary due to motion of the structure
along the L direction. Finally, it is unclear why a strong ΔBM< 0 depression exists on the magnetosheath side
of the exhaust at ~11:01:20 UT. However, in-plane currents due to VeL|| qualitatively agree with this ΔBM< 0
that may be related to similar guide-field effects reported by Eriksson et al. [2015, 2016].

4. Summary and Conclusions

We have reported the first direct evidence of magnetic reconnection exhausts in the equatorial xyGSE plane
and asymmetric Hall B and E associated with Kelvin-Helmholtz waves and a strong guide-field along the
duskside magnetopause on 8 September 2015. The analysis was focused on 42 sunward facing, ion-scale
CS between a preexisting, low-latitude boundary layer and the magnetosheath as observed by MMS at
150–185 km spacecraft separation. The pressure anisotropy-weighted Walén relation confirmed ion exhausts
at 22 of the 42 CS. The exhausts were immersed in a weakly asymmetric plasma density ratio, 1.25<N2/
N1< 2.67, between the adjacent magnetosheath and boundary layer sides of the CS. This is not expected
to greatly affect Hall fields on the low-density side of the magnetopause CS [e.g., Birn et al., 2008; Pritchett,
2008]. More importantly, there was a very strong external guide-field, with an average θ =27° ± 7° magnetic
field shear angle across the local magnetopause corresponding to a large BM/BL=4.2 between the guide-field
and the reconnecting field. This is expected to cause strong Hall B and E asymmetries [e.g., Drake et al., 2009;
Eastwood et al., 2010] as observed by MMS.

The 42 CS swept across the MMS formation at a locally measured in-plane ion speed VNL = 258 ± 35 km/s
(cf. supporting information; VN0 =�102± 53 km/s and VL0 = 229 ± 47 km/s), in general agreement with the
in-plane VHT velocity, resulting in an estimated λKH = 2.56 ± 0.3 RE KH wave period for TKH = 63.3 s. A
small A0 = 123 km amplitude perturbation at 14.5 MLT would, e.g., grow to A= A0e

γt= λKH/2 at MMS for
VKH = 258 km/s and γ/k= 135 km/s, where γ~ 0.052 s�1.

The 3.1 ± 1.8 s time durations of the 22 exhaust-related CS, with themost compressed CS sweeping by MMS-1
in only 1.2 s, correspond to 4.4 ± 1.9 Li normal widths (278 km) or <2% of λKH between consecutive CS.
Exhausts were observed in a positive (outward) L direction in 9 cases and in a negative (inward) L direction
in 13 cases along the local magnetopause CS. Most exhausts were observed in the same direction at all four
MMS spacecraft, while showing intriguing spatial differences in ViL exhaust speed. This is possibly related to
relative distances from the X line consistent with local |VeLperp� ViL| exhaust differences. One notable
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exception was the wide exhaust encountered by the MMS-1,2 pair at 11:01:19 UT, when MMS-3 and MMS-4
observed a much narrower 1.5 Li wide CS without ion exhausts. A pair of opposite VeL electron jets at MMS-3,
no (E×B)L/B

2 exhaust, and a BN rotation across the BL gradient suggest that MMS-3 and MMS-4 traversed this
CS in the vicinity of an EDR in a strong BM/BL= 4 guide-field.

MMS-1 and MMS-2 were separated along the guide-field M direction by 152± 4 km. They observed nearly
identical field and plasma signatures, which confirm that the exhausts were locally 2-D on the scale of the
MMS tetrahedron. MMS-3 and MMS-4 generally observed different field and plasma signatures from the
MMS-1,2 pair due to separations from MMS-1 along the L direction.

These unprecedented high-resolution MMS observations are consistent with KH-associated magnetic
reconnection at the sunward facing compressed CS of KH waves [e.g., Hasegawa et al., 2009; Nakamura
et al., 2013], which allows for local transport of mass and energy across the flank magnetopause despite
a large guide-field.
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