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Abstract The Magnetospheric Multiscale mission is employed to examine intense Poynting flux
directed along the background magnetic field toward Earth, which reaches amplitudes of nearly 2 mW/m2.
The event is located within the plasma sheet but likely near the boundary at a geocentric distance of 9 RE

in association with bulk flow signatures. The fluctuations have wavelengths perpendicular to the magnetic
field of 124–264 km (compared to an ion gyroradius of 280 km), consistent with highly kinetic Alfvén waves.
While the wave vector remains highly perpendicular to the magnetic field, there is substantial variation of
the direction in the perpendicular plane. The field-aligned Poynting flux may be associated with kinetic
Alfvén waves released along the separatrix by magnetotail reconnection and/or the radiation of waves
excited by bursty bulk flow braking and may provide a means through which energy released by magnetic
reconnection is transferred to the auroral region.

1. Introduction

Magnetic reconnection is a fundamental plasma process occurring in a wide variety of environments and
can play an important role in energy transport/conversion in plasmas. A variety of pathways are available for
the transfer, dissipation, and/or conversion of energy released by magnetotail reconnection, both in terms
of the partition of energy at the reconnection event [Eastwood et al., 2013] and subsequent redistribution of
energy within reconnection outflows [Stawarz et al., 2015]. A detailed understanding of these energy channels
is important both in terms of understanding magnetospheric dynamics and, more generally, the ways in which
magnetic reconnection facilitates energy conversion in plasmas. One such pathway, which is the focus of this
study, is the radiation of Poynting flux (S) that, in the context of magnetotail reconnection, may facilitate the
deposition of energy into the aurora [Shay et al., 2011; Ergun et al., 2015].

In Earth’s magnetotail, fast plasma flows known as bursty bulk flows (BBFs) are thought to be outflows
associated with near-Earth reconnection at ≈20 RE [Baumjohann et al., 1990; Chen and Wolf , 1993; Sergeev
et al., 2012]. BBFs play a significant role in mass, energy, and magnetic flux transport in the magnetotail
[Angelopoulos et al., 1994]. At≈10 RE from Earth, BBFs impinge on the nearly dipolar near-Earth magnetic field
and the resulting region of flow deflection is known as the BBF braking region [e.g., Shiokawa et al., 1997].
Both simulations and observations have suggested that the braking process drives turbulence, which could
play a role in processing/redistributing the energy released by reconnection [Shiokawa et al., 2005; Chaston
et al., 2012, 2014; El-Alaoui et al., 2013; Stawarz et al., 2015, Stawarz2015].

Sources of Alfvénic Poynting flux have been linked to reconnection and the resulting BBFs. Using Geotail data
at geocentric distances of 18 RE and Polar at 5 RE , Angelopoulos et al. [2002] argued that S observed near Earth
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was linked to BBFs. Observations of intense S have been reported within the turbulent braking region, and it
has been suggested that a finite size region of turbulence within the plasma sheet could radiate waves along
the magnetic field toward Earth [Ergun et al., 2015; Stawarz et al., 2015]. Alternatively, reconnection simulations
have demonstrated that kinetic Alfvén waves generate an S signature near the separatrix [Shay et al., 2011],
and observations of S near the diffusion region using Cluster may be consistent with this scenario [Chaston
et al., 2009; Dai et al., 2011; Eastwood et al., 2013]. The presence of kinetic Alfvén waves, which can transport
energy at super-Alfvénic velocities, may account for the observed early onset of auroral brightening compared
to Alfvénic transit times from the reconnection event [Angelopoulos et al., 2008].

Previous studies of S observed nearer to Earth have suggested a link to auroral activity. Using the Polar satellite
at geocentric distances from 4 to 7 RE , intense earthward Alfvénic Poynting flux was reported near the plasma
sheet boundary with adequate energy available to account for auroral observations [Wygant et al., 2000, 2002;
Keiling et al., 2000, 2002]. Fast Auroral Snapshot (FAST) observations at lower altitudes have shown Alfvénic
fluctuations in conjunction with energized electrons, which could result in Alfvénic aurora [Chaston et al., 2002,
2003, 2007], and a Polar-FAST conjunction study further supported the link between Alfvénic S and auroral
particle acceleration [Dombeck et al., 2005].

In this letter, a case study is presented of an observation of intense S within the plasma sheet at XGSM = −7 RE

(9 RE in radial distance) in geocentric solar magnetospheric (GSM) coordinates using the Magnetospheric
Multiscale (MMS) mission [Burch et al., 2016]. The event is located near the plasma sheet boundary and is
associated with fast flow and magnetic dipolarization signatures indicative of a BBF event. While a number
of studies have examined S closer to Earth, the intermediate distances near 10 RE and toward the inner edge
of the plasma sheet are an important region for understanding the energy budget associated with magneto-
tail reconnection [Angelopoulos et al., 2002; Stawarz et al., 2015]. The small-scale multispacecraft formation of
MMS is used to directly probe the kinetic-scale structure of field-aligned S for the first time. The results show
the fluctuations are consistent with kinetic Alfvén waves and exhibit three-dimensional (3-D) structure, which
has not been reported previously.

2. Observations

The event analyzed in this study was observed by MMS on 24 August 2016 in the Earth’s plasma sheet at
XGSM ≈ −7 RE , YGSM ≈ 5.4 RE , and ZGSM ≈ −2 RE . The relatively large |ZGSM| means the spacecraft are likely
near the edge of the plasma sheet, putting MMS in an ideal location to examine S radiating away from the
neutral sheet.

In this study, S is defined such that

S ≡
𝛿E × 𝛿B

𝜇0
(1)

where 𝛿E and 𝛿B are the fluctuations in the electric (E) and magnetic (B) fields, respectively, and 𝜇0 is the vac-
uum permeability [Wygant et al., 2000]. The fluctuations are taken to be the signal after a 30 s running average
is removed from the data and a background magnetic field (B0) is defined based on the running average. Sub-
scripts || and ⟂ will refer to the directions parallel and perpendicular to B0, respectively. Alignment of S with
B0 is consistent with Alfvén waves.

Figure 1 gives an overview of the event showing ion and electron particle distributions and moments from the
Fast Plasma Investigation (FPI) [Pollock et al., 2016] (a–e), B from the Fluxgate Magnetometers (FGM) [Russell
et al., 2016] (f ), E from the Electric Field Double Probes (EDP) [Ergun et al., 2016; Lindqvist et al., 2016] (g),
S (panel h), and current density (J) derived from the FGM data using the four spacecraft formation (i) [Robert
et al., 1998]. Figure 1j shows in detail a section of Figure 1h during the time period with the strongest S,
and Figure 1k shows the region around the most intense S|| as observed by all four spacecraft. FPI data were
available on only MMS3 during the event.

Background counts associated with penetrating radiation are subtracted from the ion distributions in
Figure 1a, and the distributions with the background subtracted are used to compute the ion density and
velocity. The background is taken to be isotropic with constant differential energy flux as a function of
energy. The density and flow speeds are overestimated and underestimated by factors of ∼2, respectively,
due to penetrating radiation in the vicinity of the intense S. As can be seen in Figure 1a, the ion distributions
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Figure 1. Overview of the event analyzed in this study showing (a) ion differential energy flux with Ti in black,
(b) electron differential energy flux with Te in black, (c) ion (ni) and electron (ne) number densities, (d) ion velocity (Vi),
(e) electron velocity (Ve), (f ) B with |B| in black, (g) E, (h) S with S|| in black, (i) J, (j) S within the region marked by
dashed lines in Figures 1a–1i, and (k) S|| for the four spacecraft within the region marked by dashed lines in Figure 1j.
All vectors are given in GSM coordinates. In Figure 1k, arrows labeled n̂in and n̂out mark the ingoing and outgoing
boundaries discussed in section 2.1, respectively.

can extend to energies above the FPI energy range, which result in the ion temperatures (Ti) derived from the
FPI data underestimating the actual temperature. Examining the omnidirectional ion differential energy flux
from FPI and the Energetic Ion Spectrogram [Mauk et al., 2016] and assuming a Maxwellian distribution gives
the rough estimate Ti ≈ 15 keV, which is consistent with previous plasma sheet studies [e.g., Baumjohann,
1993; Paterson and Frank, 1994; Stawarz et al., 2015]. Based on the electron temperature (Te) and this estimate
of Ti , ion and electron gyroradii (𝜌i and 𝜌e) are 280 km and 2.7 km, respectively, and 𝛽 ≈ 1.26. The spacecraft
separation is ≈40 km, which is between the ion and electron scales.

Early in the event from 06:44:00 to roughly 06:45:05 UTC the spacecraft are located within the lobe, as indicated
by the low number density (n), providing evidence that the overall event is close to the edge of the plasma
sheet. The spacecraft then enter the plasma sheet and encounter two earthward ion flows of ≈700 km/s,
separated by another excursion into the lobe. A third significant enhancement in flow speed reaching
≈500 km/s occurs at roughly 06:49:30 UTC. The two initial fast flows are antiparallel to B and examination of the
ion distributions (not shown) confirms they are associated with beams in the plasma sheet boundary, while
the latter flow enhancement is perpendicular to B consistent with BBFs. Several dipolarization signatures
(|Bx| GSM decreases and Bz GSM increases) are seen in the event, for example, at 06:47:05 and 06:49:30 UTC.
The latter dipolarization, which is marked by vertical dashed lines in Figures 1a–1i and is coincident with the
perpendicular fast flow signature, is associated with enhanced E and B fluctuations that give rise to several
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Figure 2. Distribution of the cosine of the angle between S and B0 for
the interval 06:49:40 to 06:50:10 UTC, which contains the strong S||
spikes in black and for data points where |S|> 0.5 mW/m2 in red. Both
distributions show enhancements at values near −1, consistent with
anti-field-aligned S traveling away from the neutral sheet and
toward Earth.

intense spikes in anti-field-aligned S of
nearly−2 mW/m2, as well as less intense
spikes in the field-aligned direction. The
strongest values of J within the inter-
val are also present in the vicinity of
the S structures. The most intense S is
observed within the plasma sheet and
not at the plasma sheet/lobe boundary.

2.1. Poynting Flux Analysis
Figure 2 plots the distribution of the
cosine of the angle between S and B0.
The distribution is computed for all data
between 06:49:40 and 06:50:10 UTC
(black line), as well as only for data
where |S|> 0.5 mW/m2 (red line). In
both cases the distributions are peaked
at −1, indicating a propensity for strong
S to be near antialignment with B0, con-
sistent with Alfvénic fluctuations. Since
MMS is located below the magnetic

equator, this orientation is consistent with energy flux propagating away from the neutral sheet and toward
the southern polar region. The distributions do not show bidirectional S|| propagating in both directions
along B0.

Based on Figure 1k, which plots S|| for all four spacecraft, differences in the times at which each spacecraft
enters the regions of intense S are present. Based on the time differences between boundary crossings,
boundary normal directions (n̂) and normal speeds (Vn) can be estimated [Schwartz, 1998]. In this study the
times of boundary crossings are based on the time at which S|| reaches a specified threshold amplitude. Vary-
ing the value of the threshold for each of the boundaries produces similar results, and quoted values are
averages of several different thresholds. While the overall structure and several boundaries in Figure 1k show
sufficient similarity between the spacecraft for the timing analysis to be reasonably performed, some bound-
aries, such as the one near 06:50:03.5 UTC show significant fluctuations that are not well correlated between
spacecraft. These fluctuations may indicate additional substructure at scales smaller than the spacecraft
separation.

The observed fluctuations appear to be essentially linearly polarized. For linearly polarized fluid or kinetic
Alfvén waves, the instantaneously computed S|| varies as the square of the E or B ∝ cos[k ⋅x−𝜔t] oscillations
and the wavelength for S|| ∝ cos2[k ⋅x−𝜔t] = 0.5+0.5 cos[2k ⋅x−2𝜔t]will be half the size. If the plasma were
not moving, Vn would be the wave’s phase speed. However, regardless of how the plasma motion shifts the
observed velocities, the wave vector (k) is expected to be in the n̂ direction, which can be used to examine
the geometry of the fluctuations.

For the ingoing and outgoing boundaries marked in Figure 1k, n̂in = [0.24, −0.39, 0.87] and n̂out = [0.70, 0.63,
−0.32] in GSM coordinates with Vn,in = 490 km/s and Vn,out = 290 km/s. The orientation of n̂in is nearly in the
+ẑGSM direction indicating MMS was toward the center of the plasma sheet prior to entering the intense S||.
In the field-aligned coordinate system [⟂1, ⟂2, ||], where || is the B0 direction, ⟂1 is aligned with the perpen-
dicular component of n̂in, and ⟂2 completes the right-handed coordinate system, n̂in = [0.99, 0, 0.09] and
n̂out = [−0.36, 0.93,−0.09]. With respect to B0, these n̂ make the angles 𝜃Bnin

= 85∘ and 𝜃Bnout
= 95∘. The normal

directions are nearly perpendicular to B0, consistent with highly perpendicular k. Where possible, examination
of additional boundaries also gives angles within 10∘ of perpendicular to B0.

While n̂in and n̂out are both nearly perpendicular to B0, there is a significant difference in direction of 110∘

between n̂in and n̂out giving an indication of the 3-D structure of the S|| region. Figure 3 provides a simplified
diagram of the possible configuration of the strong S|| region that would be consistent with n̂in and n̂out.
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Figure 3. Simplified diagram, neglecting additional substructure, of the
possible geometry for the region of strong S|| in Figure 1k based on the
orientations of n̂in and n̂out. Shaded gray areas indicate regions of intense
S||. For an infinite plane wave, the intense S|| would be a series of
parallel planar sheets with k in the direction normal to the sheets. The
observations indicate a distortion to the plane wave structure. The n̂in
direction is within 30∘ of ẑGSM indicating that MMS was above the
structure prior to entering the intense S||.

The observations indicate there is a
significant variation of n̂ in the perpen-
dicular plane, indicating a non–plane
wave structure.

Just after the ingoing boundary a dip
is present in |S||| at 06:50:03.135 UTC,
which is only observed by MMS2.
Since MMS2 was the first spacecraft to
enter the S|| region, this feature may
be consistent with MMS skimming the
opposite edge of the region. Assum-
ing the boundary at 06:50:03.135 UTC
is nearly perpendicular to n̂in, the
thickness of the region in the normal
direction can be estimated. The time
difference between MMS2 observing
the half maximum of |S||| upon enter-
ing the strong S|| region and entering
the dip is ≈0.32 s, which, based on

Vn,in, gives a thickness of 154 km. This thickness corresponds to a wavelength (𝜆) of 600 km or k⟂𝜌i ≈ 2.9 since
the half-maximum width of |S||| is expected to be 𝜆∕4 from theory.

2.2. Comparison to Kinetic Alfvén Waves
Kinetic Alfvén waves are a generalization of magnetohydrodynamic (MHD) Alfvén waves for fluctuations
with k⟂𝜌i ≥ 1 [e.g., Hasegawa, 1976; Lysak and Lotko, 1996; Bellan, 2012] and have been invoked in previous
studies of S|| observed nearer to Earth [e.g., Wygant et al., 2002] or in association with BBFs [Chaston et al.,
2012; Ergun et al., 2015]. While MHD Alfvén waves have 𝛿E⟂∕𝛿B⟂ equal to the Alfvén velocity (VA), kinetic
corrections lead to an enhancement in 𝛿E⟂∕𝛿B⟂, which can be used to estimate k⟂ from the observations.
Based on root-mean-square (RMS) amplitudes of 𝛿B⟂ and 𝛿E⟂ for data points where S|| < −0.5 mW/m2,
𝛿E⟂∕𝛿B⟂=7500 km/s. Alternative estimates using RMS amplitudes from the intervals 06:49:40 to 06:50:10 UTC
and 06:50:02 to 06:50:06 UTC give 6800 km/s and 13000 km/s, respectively. All of these estimates are

Figure 4. Three numerical kinetic Alfvén wave solutions for 𝛿E⟂∕𝛿B⟂
as a function of k⟂ varying the ratio of Te0∕Ti0. The solutions use
the parameters B0 = 63 nT, n0 = 0.72 cm−3, and Te0 = 2600 eV as
computed from the MMS data. Horizontal dashed lines give estimates
of 𝛿E⟂∕𝛿B⟂ observed by MMS. Vertical dotted lines give the value of k⟂
where the damping rate is one tenth the angular frequency of the
wave. Observed 𝛿E⟂∕𝛿B⟂ are consistent with 𝜆 ≈ 124–264 km.

significantly larger than the observed
VA = 1600 km/s, and therefore, the fluctu-
ations are inconsistent with MHD Alfvén
waves.

Since 𝛽 ≳ 1, which makes it difficult to
obtain analytic kinetic Alfvén wave solu-
tions, numerical solutions to the lin-
earized Maxwell-Vlasov equations for a
homogeneous plasma [Stix, 1992] are
plotted in Figure 4. The solutions assume
a proton-electron plasma with isotropic
Maxwellian background particle distribu-
tions and weak dissipation as described in
Stawarz et al. [2015]. Figure 4 plots three
kinetic Alfvén wave solutions for 𝛿E⟂∕𝛿B⟂
given by the expression

𝛿E⟂
𝛿B⟂

= 𝜔

k|| − k⟂
𝛿E||
𝛿E⟂

(2)

where 𝜔 is the angular frequency of the
wave. The solutions use the background
parameters B0 = 63 nT, n0 = 0.72 cm−3,
and Te0 = 2600 eV based on averages
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of the observed data, where subscript 0 denotes the homogeneous background. The ratio Te0∕Ti0 is varied
from 0.1 to 0.4 since Ti cannot be accurately obtained from FPI alone. The range of Te0∕Ti0 is chosen based on
the range of values observed in previous studies of BBFs [e.g., Stawarz et al., 2015].

Based on the numerical solutions, k⟂≈ 0.024 to 0.051 km−1 or𝜆≈124 to 264 km. However, for k⟂ > 0.032 km−1

(𝜆 <196 km) fluctuations are likely to experience significant damping with ratios of the damping rate to the
angular frequency greater than 0.1 and therefore may be less likely to be observed. These length scales are
larger than the 40 km spacecraft separation, consistent with all four spacecraft fitting within the structures
at the same time. Timing analysis results suggest a longer wavelength of 600 km; however, given that the
orientation of n̂ is found to vary, an overestimate based on the timing might be expected. Furthermore, the
fact that the length scales correspond to k⟂𝜌i ranging from 8 to 18 means the fluctuations exhibit highly
kinetic behavior since k⟂𝜌i ≈ 1 corresponds to the kinetic corrections becoming dominant.

Another method for computing k is by examining the phase differences between the spacecraft of the Fourier
transforms of the fluctuations [Chaston et al., 2009; Dai et al., 2011]. This method assumes plane wave fluctua-
tions, which may not be a valid assumption for this event as found in section 2.1. Using this method to examine
the magnetic fluctuations at spacecraft-frame frequencies between 0.7 and 2 Hz for the interval 06:49:40 to
06:50:10 UTC gives k perpendicular to B0 with |k| ≈ 0.015 to 0.02 km−1, which is broadly consistent with the
above results.

Kinetic Alfvén waves are also expected to have a nonzero 𝛿B||. Based on the numerical solutions, 𝛿B||∕𝛿B⟂
in the range expected based on 𝛿E⟂∕𝛿B⟂ varies from ≈0.5 to 0.7 depending on Te0∕Ti0, with smaller Te0∕Ti0

resulting in larger 𝛿B||∕𝛿B⟂. Based on the RMS values, 𝛿B||∕𝛿B⟂ = 0.45 for data points where S|| < −0.5 mW/m2

and 𝛿B||∕𝛿B⟂ = 0.72 for the interval 06:50:02 to 06:50:06 UTC corresponding to the most intense S|| structure.
Both of these estimates are close to the theoretical range of 𝛿B||∕𝛿B⟂ and are therefore consistent with kinetic
Alfvén waves.

3. Conclusions

In this letter, intense anti-field-aligned Poynting flux observed at 9 RE in the Earth’s plasma sheet has been
examined using multipoint measurements from MMS. The small-scale formation of MMS allows for the analy-
sis of the 3-D structure of S for the first time. The anti-field-aligned nature means the energy flux is propagating
toward the southern polar regions of Earth. Amplitudes of S|| are observed to approach 2 mW/m2 locally and
would be considerably more intense if mapped to the auroral region, where B is much larger. The S therefore
may drive Alfvénic aurora [Chaston et al., 2007].

The fluctuations are found to be consistent with kinetic Alfvén waves with significant kinetic behavior.
Perpendicular wavelengths are found to be ≈124–264 km compared to 𝜌i ≈ 280 km, which is larger than
the wavelengths of 20–120 km reported closer to Earth at 4–6 RE [Wygant et al., 2002]. Additionally, multi-
spacecraft analysis shows the fluctuations have significant variations in the normal direction consistent with a
non-plane wave structure, which has not been demonstrated previously. The non-plane wave structure could
be associated with the presence of multiple waves with different k⟂ orientations and the fundamentally 3-D
nature of the excitation mechanism.

Similar intense S|| signatures were observed closer to the center of the plasma sheet in association with BBF
braking events [Chaston et al., 2012; Ergun et al., 2015; Stawarz et al., 2015]. S|| distributions in these events
tended to be skewed in the direction away from the neutral sheet and toward Earth; however, in some cases,
intense S|| was present in both directions within a single event. Additionally, Pritchett et al. [2014] report sim-
ulations with similar wave activity near the edge of the plasma sheet in association with BBFs. On the other
hand, Shay et al. [2011] showed the reconnection event could lead to a unidirectional kinetic Alfvén wave
signature near the separatrix of comparable strength to these observations.

The event examined in this study, which was likely located toward the edge of the plasma sheet, showed
a strong propensity of anti-field-aligned S|| with relatively little field-aligned S||. S|| appears to be coinci-
dent with dipolarization/flow signatures associated with BBF braking. If MMS encountered the edge of the
BBF braking region, these observations may be consistent with the BBF braking region acting as a source of
Alfvénic Poynting flux, which then radiates away from the neutral sheet and toward the auroral regions. In
this scenario, the radiation of kinetic-scale fluctuations, as observed, instead of MHD-scale Alfvén waves may
result from a turbulent cascade, which transfers energy to the small-scale fluctuations [Stawarz et al., 2015].
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However, for magnetotail reconnection the separatrix is expected to be in the vicinity of the plasma sheet
boundary, and therefore, it is also conceivable that MMS is observing this signature. Since MMS entered the
intense S|| from within the plasma sheet, the motion of the ingoing boundary in the +ẑGSM direction may be
consistent with this scenario. In principle, one might expect that if the trajectories of MMS are moving in and
out of the S structures near the separatrix due to the motion of the magnetotail, the spacecraft might move
from the plasma sheet to the lobe plasma as they travel through the structure. However, the distance of the
spacecraft from the lobe is unclear from the observations, and since S would extend to some distance away
from the separatrix, it is also possible for the MMS trajectories to skim the region without crossing into the
lobe. Additionally, it may be possible for both of these source mechanism to be operating simultaneously, and
therefore, MMS may observe S associated with both mechanisms.

At present, it is unclear how to separate the contributions from the two source mechanisms in this region,
but examination of simultaneous observations of the BBF braking region near the center of the plasma sheet
and toward the edge of the plasma sheet may shed additional light on the source of intense S|| in the inner
magnetotail. Additionally, measurements from MMS farther down tail, after the apogee has been raised to
25 RE , may provide additional insight on S|| near the separatrix. The highly kinetic nature of the fluctuations
observed in this study also implies that local dissipation of some energy may be occurring as suggested by
Angelopoulos et al. [2002] and observed by Chaston et al. [2014], which could be examined through the use of
statistical studies.

In summary, this work provides new insight on intense S|| observed in the near-Earth magnetosphere. The
radiation of S|| provides an important pathway for the transport of energy released by reconnection to the
auroral region. The small-scale multispacecraft analysis reveals 3-D structure associated with S||, which may
be linked to the 3-D nature of the driving mechanism. The 3-D structure makes it difficult to obtain the length
scale of the fluctuations directly from the timing analysis; however, analysis of 𝛿E⟂∕𝛿B⟂ indicates fluctuations
consistent with highly kinetic Alfvén waves. The driving mechanism for the fluctuations may be associated
with the BBF braking region and/or the magnetic reconnection separatrix; further analysis of S in different
regions of the magnetotail will elucidate their relative importance.

References
Angelopoulos, V., C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. Russell, W. Baumjohann, W. C. Feldman, and J. T. Gosling

(1994), Statistical characteristics of bursty bulk flow events, J. Geophys. Res., 99, 21,257–21,280, doi:10.1029/94JA01263.
Angelopoulos, V., J. A. Chapman, F. S. Mozer, J. D. Scudder, C. T. Russell, K. Tsuruda, T. Mukai, T. J. Hughes, and K. Yumoto (2002),

Plasma sheet electromagnetic power generation and its dissipation along auroral field lines, J. Geophys. Res., 107(A8), 1181,
doi:10.1029/2001JA900136.

Angelopoulos, V., et al. (2008), Tail reconnection triggering substorm onset, Science, 321, 931–935, doi:10.1126/science.1160495.
Baumjohann, W. (1993), The near Earth plasma sheet—An AMPTE/IRM perspective, Space Sci. Rev., 64, 141–163, doi:10.1007/BF00819660.
Baumjohann, W., G. Paschmann, and H. Luehr (1990), Characteristics of high-speed ion flows in the plasma sheet, J. Geophys. Res., 95,

3801–3809, doi:10.1029/JA095iA04p03801.
Bellan, P. M. (2012), Improved basis set for low frequency plasma waves, J. Geophys. Res., 117, A12219, doi:10.1029/2012JA017856.
Burch, J. L., T. E. Moore, R. B. Torbert, and B. L. Giles (2016), Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 199,

5–21, doi:10.1007/s11214-015-0164-9.
Chaston, C. C., J. W. Bonnell, L. M. Peticolas, C. W. Carlson, J. P. McFadden, and R. E. Ergun (2002), Driven Alfven waves and electron

acceleration: A FAST case study, Geophys. Res. Lett., 29(11), 1535, doi:10.1029/2001GL013842.
Chaston, C. C., J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, and R. J. Strangeway (2003), Properties of small-scale Alfvén waves

and accelerated electrons from FAST, J. Geophys. Res., 108(A4), 8003, doi:10.1029/2002JA009420.
Chaston, C. C., C. W. Carlson, J. P. McFadden, R. E. Ergun, and R. J. Strangeway (2007), How important are dispersive Alfvén waves for auroral

particle acceleration?, Geophys. Res. Lett., 34, L07101, doi:10.1029/2006GL029144.
Chaston, C. C., J. R. Johnson, M. Wilber, M. Acuna, M. L. Goldstein, and H. Reme (2009), Kinetic Alfvén wave turbulence and transport through

a reconnection diffusion region, Phys. Rev. Lett., 102(1), 015001, doi:10.1103/PhysRevLett.102.015001.
Chaston, C. C., J. W. Bonnell, L. Clausen, and V. Angelopoulos (2012), Correction to “Energy transport by kinetic-scale electromagnetic waves

in fast plasma sheet flows”, J. Geophys. Res., 117, A12205, doi:10.1029/2012JA018476.
Chaston, C. C., J. W. Bonnell, and C. Salem (2014), Heating of the plasma sheet by broadband electromagnetic waves, Geophys. Res. Lett., 41,

8185–8192, doi:10.1002/2014GL062116.
Chen, C. X., and R. A. Wolf (1993), Interpretation of high-speed flows in the plasma sheet, J. Geophys. Res., 98, 21,409–21,419,

doi:10.1029/93JA02080.
Dai, L., J. R. Wygant, C. Cattell, J. Dombeck, S. Thaller, C. Mouikis, A. Balogh, and H. Rème (2011), Cluster observations of surface waves in the

ion jets from magnetotail reconnection, J. Geophys. Res., 116, A12227, doi:10.1029/2011JA017004.
Dombeck, J., C. Cattell, J. R. Wygant, A. Keiling, and J. Scudder (2005), Alfvén waves and Poynting flux observed simultaneously by Polar and

FAST in the plasma sheet boundary layer, J. Geophys. Res., 110, A12S90, doi:10.1029/2005JA011269.
Eastwood, J. P., T. D. Phan, J. F. Drake, M. A. Shay, A. L. Borg, B. Lavraud, and M. G. G. T. Taylor (2013), Energy partition in magnetic

reconnection in Earth’s magnetotail, Phys. Rev. Lett., 110(22), 225001, doi:10.1103/PhysRevLett.110.225001.

Acknowledgments
This work is supported by
STFC(UK) grants ST/N000692/1
and ST/K001051/1 and NSF grant
AGS-1219382. The authors thank the
entire MMS team for their work on the
mission and Rishi Mistry for useful dis-
cussions. Data are publicly available
from the MMS Science Data Center at
http://lasp.colorado.edu/mms/sdc/.

STAWARZ ET AL. MMS ANALYSIS OF INTENSE POYNTING FLUX 7112

http://dx.doi.org/10.1029/94JA01263
http://dx.doi.org/10.1029/2001JA900136
http://dx.doi.org/10.1126/science.1160495
http://dx.doi.org/10.1007/BF00819660
http://dx.doi.org/10.1029/JA095iA04p03801
http://dx.doi.org/10.1029/2012JA017856
http://dx.doi.org/10.1007/s11214-015-0164-9
http://dx.doi.org/10.1029/2001GL013842
http://dx.doi.org/10.1029/2002JA009420
http://dx.doi.org/10.1029/2006GL029144
http://dx.doi.org/10.1103/PhysRevLett.102.015001
http://dx.doi.org/10.1029/2012JA018476
http://dx.doi.org/10.1002/2014GL062116
http://dx.doi.org/10.1029/93JA02080
http://dx.doi.org/10.1029/2011JA017004
http://dx.doi.org/10.1029/2005JA011269
http://dx.doi.org/10.1103/PhysRevLett.110.225001
http://lasp.colorado.edu/mms/sdc/


Geophysical Research Letters 10.1002/2017GL073685

El-Alaoui, M., R. L. Richard, M. Ashour-Abdalla, M. L. Goldstein, and R. J. Walker (2013), Dipolarization and turbulence in the plasma
sheet during a substorm: THEMIS observations and global MHD simulations, J. Geophys. Res. Space Physics, 118, 7752–7761,
doi:10.1002/2013JA019322.

Ergun, R. E., K. A. Goodrich, J. E. Stawarz, L. Andersson, and V. Angelopoulos (2015), Large-amplitude electric fields associated with bursty
bulk flow braking in the Earth’s plasma sheet, J. Geophys. Res. Space Physics, 120, 1832–1844, doi:10.1002/2014JA020165.

Ergun, R. E., et al. (2016), The axial double probe and fields signal processing for the MMS mission, Space Sci. Rev., 199, 167–188,
doi:10.1007/s11214-014-0115-x.

Hasegawa, A. (1976), Particle acceleration by MHD surface wave and formation of aurora, J. Geophys. Res., 81, 5083–5090,
doi:10.1029/JA081i028p05083.

Keiling, A., J. R. Wygant, C. Cattell, M. Temerin, F. S. Mozer, C. A. Kletzing, J. Scudder, C. T. Russell, W. Lotko, and A. V. Streltsov (2000), Large
Alfvén wave power in the plasma sheet boundary layer during the expansion phase of substorms, Geophys. Res. Lett., 27, 3169–3172,
doi:10.1029/2000GL000127.

Keiling, A., J. R. Wygant, C. Cattell, W. Peria, G. Parks, M. Temerin, F. S. Mozer, C. T. Russell, and C. A. Kletzing (2002), Correlation of
Alfvén wave Poynting flux in the plasma sheet at 4–7 RE with ionospheric electron energy flux, J. Geophys. Res., 107(A7), 1132,
doi:10.1029/2001JA900140.

Lindqvist, P.-A., et al. (2016), The spin-plane double probe electric field instrument for MMS, Space Sci. Rev., 199, 137–165,
doi:10.1007/s11214-014-0116-9.

Lysak, R. L., and W. Lotko (1996), On the kinetic dispersion relation for shear Alfvén waves, J. Geophys. Res., 101, 5085–5094,
doi:10.1029/95JA03712.

Mauk, B. H., et al. (2016), The Energetic Particle Detector (EPD) investigation and the Energetic Ion Spectrometer (EIS) for the
Magnetospheric Multiscale (MMS) mission, Space Sci. Rev., 199, 471–514, doi:10.1007/s11214-014-0055-5.

Paterson, W. R., and L. A. Frank (1994), Survey of plasma parameters in Earth’s distant magnetotail with the Geotail spacecraft, Geophys. Res.
Lett., 21, 2971–2974, doi:10.1029/94GL02105.

Pollock, C., et al. (2016), Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., 199, 331–406,
doi:10.1007/s11214-016-0245-4.

Pritchett, P. L., F. V. Coroniti, and Y. Nishimura (2014), The kinetic ballooning/interchange instability as a source of dipolarization fronts and
auroral streamers, J. Geophys. Res. Space Physics, 119, 4723–4739, doi:10.1002/2014JA019890.

Robert, P., M. W. Dunlop, A. Roux, and G. Chanteur (1998), Accuracy of current density determination, ISSI Sci. Rep. Ser., 1, 395–418.
Russell, C. T., et al. (2016), The magnetospheric multiscale magnetometers, Space Sci. Rev., 199, 189–256, doi:10.1007/s11214-014-0057-3.
Schwartz, S. J. (1998), Shock and discontinuity normals, mach numbers, and related parameters, ISSI Sci. Rep. Ser., 1, 249–270.
Sergeev, V. A., V. Angelopoulos, and R. Nakamura (2012), Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 39,

L05101, doi:10.1029/2012GL050859.
Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan (2011), Super-Alfvénic propagation of substorm reconnection signatures and Poynting

flux, Phys. Rev. Lett., 107(6), 065001, doi:10.1103/PhysRevLett.107.065001.
Shiokawa, K., W. Baumjohann, and G. Haerendel (1997), Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 24,

1179–1182, doi:10.1029/97GL01062.
Shiokawa, K., I. Shinohara, T. Mukai, H. Hayakawa, and C. Z. Cheng (2005), Magnetic field fluctuations during substorm-associated

dipolarizations in the nightside plasma sheet around X = −10 RE , J. Geophys. Res., 110, A05212, doi:10.1029/2004JA010378.
Stawarz, J. E., R. E. Ergun, and K. A. Goodrich (2015), Generation of high-frequency electric field activity by turbulence in the Earth’s

magnetotail, J. Geophys. Res. Space Physics, 120, 1845–1866, doi:10.1002/2014JA020166.
Stix, T. H. (1992), Waves in Plasmas, Springer, New York.
Wygant, J. R., et al. (2000), Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within

the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora, J. Geophys. Res., 105, 18,675–18,692,
doi:10.1029/1999JA900500.

Wygant, J. R., et al. (2002), Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet
boundary layer, J. Geophys. Res., 107(A8), 1201, doi:10.1029/2001JA900113.

STAWARZ ET AL. MMS ANALYSIS OF INTENSE POYNTING FLUX 7113

http://dx.doi.org/10.1002/2013JA019322
http://dx.doi.org/10.1002/2014JA020165
http://dx.doi.org/10.1007/s11214-014-0115-x
http://dx.doi.org/10.1029/JA081i028p05083
http://dx.doi.org/10.1029/2000GL000127
http://dx.doi.org/10.1029/2001JA900140
http://dx.doi.org/10.1007/s11214-014-0116-9
http://dx.doi.org/10.1029/95JA03712
http://dx.doi.org/10.1007/s11214-014-0055-5
http://dx.doi.org/10.1029/94GL02105
http://dx.doi.org/10.1007/s11214-016-0245-4
http://dx.doi.org/10.1002/2014JA019890
http://dx.doi.org/10.1007/s11214-014-0057-3
http://dx.doi.org/10.1029/2012GL050859
http://dx.doi.org/10.1103/PhysRevLett.107.065001
http://dx.doi.org/10.1029/97GL01062
http://dx.doi.org/10.1029/2004JA010378
http://dx.doi.org/10.1002/2014JA020166
http://dx.doi.org/10.1029/1999JA900500
http://dx.doi.org/10.1029/2001JA900113

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


