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Abstract Using MMS high-resolution measurements, we present the first observation of fast electron jet
(Ve ~2,000 km/s) at a dipolarization front (DF) in themagnetotail plasma sheet. This jet, with scale comparable
to the DF thickness (~ 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly
undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a
localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent
normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong
energy conversion is primarily attributed to the electron-jet-driven current (E � je ≈ 2 E � ji), rather than the ion
current suggested in previous studies.

1. Introduction

Dipolarization fronts (DFs), characterized by the abrupt increase of magnetic field Bz (e.g., Fu et al., 2012a;
Nakamura et al., 2002; Runov et al., 2009; Schmid et al., 2016; Sergeev et al., 2009) and usually preceded by
a small Bz dip structure (e.g., Huang et al., 2012; Yao et al., 2015), are frequently observed as earthward-
propagating tangential discontinuities (e.g., Fu et al., 2012b; Khotyaintsev et al., 2011; Lu et al., 2013) in bursty
bulk flows (BBFs) (e.g., Angelopoulos et al., 1992; Cao et al., 2006, 2008; Ma et al., 2009) in the Earth’s magneto-
tail. They play a significant role in flux transport and energy conversion during substorms (e.g., Angelopoulos
et al., 2013; Huang, Fu, et al., 2015; Hwang et al., 2011; Liu et al., 2013) and have been suggested as conse-
quences of unsteady magnetic reconnection in both simulations (e.g., Sitnov et al., 2009) and observations
(e.g., Fu, Cao, et al., 2013).

DFs can propagate coherently toward the Earth over a long distance after their formation near the
reconnection site in the midtail (e.g., Runov et al., 2009). During earthward propagation of DFs, strong wave
activity, such as lower hybrid drift waves (e.g., Divin, Khotyaintsev, Vaivads, & André, 2015; Khotyaintsev
et al., 2011; Zhou et al., 2009), large-amplitude magnetosonic waves (Huang, Yuan, et al., 2015; Zhou
et al., 2014), and broadband electrostatic waves (Yang et al., 2017), has been observed at the DF. The
DF has also been suggested as important energy conversion site (e.g., Angelopoulos et al., 2013;
Huang, Fu, et al., 2015; Khotyaintsev et al., 2017) due to intense currents and electric fields at the front.
Flux pileup regions (FPRs) (e.g., Fu et al., 2011; Khotyaintsev et al., 2011) or dipolarizing flux bundles (e.g.,
Liu et al., 2013) behind DFs have been suggested to be favorable places for suprathermal electron accelera-
tion (e.g., Ashour-Abdalla et al., 2011; Birn et al., 2013; Duan et al., 2014; Fu et al., 2011; Fu, Khotyaintsev,
et al., 2013; Gabrielse et al., 2012; Liu, Fu, Xu, Wang, et al., 2017; Lu et al., 2016; Pan et al., 2012; Wu et al.,
2013), wave-particle interactions (e.g., Breuillard et al., 2016; Fu et al., 2014; Huang et al., 2012; Hwang
et al., 2014; Khotyaintsev et al., 2011; Panov et al., 2013), and pitch angle evolution (e.g., Fu, Khotyaintsev,
Vaivads, André, Sergeev, et al., 2012; Liu, Fu, Xu, Cao, & Liu, 2017; Liu, Fu, Cao, et al., 2017).

So far, particle and wave dynamics in the vicinity of DFs, particularly inside the FPRs, have been well inves-
tigated. However, plasma dynamics right at the front remains an open issue hitherto, owing to the scarcity
of high-resolution multipoint measurements at the front. Comparing to previous spacecraft missions
(e.g., Cluster and Time History of Events and Macroscale Interactions during Substorms (THEMIS)), the
recently launched Magnetospheric Multiscale (MMS) mission (Burch et al., 2015) provides highly improved
particle measurements at unprecedented temporal resolution and has small separations, enabling
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detailed investigation of particle dynamics and wave characteristics at the front. Using MMS measure-
ments, the global distribution of DFs (Schmid et al., 2016), whistler waves behind DFs (Breuillard et al.,
2016), and current structures at DFs (Yao et al., 2017) have recently been investigated. However, in these
studies, the DFs were detected in the commissioning phase of MMS, when the particle measurements
were unavailable or not well calibrated, and consequently, the particle dynamics at DFs was not dis-
cussed there.

Recently, MMS has proceeded to its first tail season (after May 2017) with high-resolution measurements of
particles, providing an opportunity to address this issue. In this study, we use the MMS measurements in its
first tail season to study the particle dynamics at the DF. We particularly focus on the characteristics of elec-
tron flow at the front, which could not be directly measured by previous spacecraft (e.g., Cluster and
THEMIS). For the first time, we reveal the partition of energy conversion at the DF, which is crucial but could
not be resolved by previous spacecraft as well.

2. Observations

An event of interest was observed by MMS on 28 May 2017, when the four MMS spacecraft were located at
[�19.6, �12.6, 2.1] Earth radii in geocentric solar magnetospheric (GSM) coordinates, and the MMS constel-
lation was in a tetrahedron formation with ~57 km separation. Note that such a separation (~7 de, de = c/ωpe

is local electron initial length) is much smaller than that of Cluster (~200 km) and thus allows us to investi-
gate particle dynamics at electron scale. FIELDS EDP (Ergun et al., 2014; Lindqvist et al., 2014), FluxGate mag-
netometer (Russell et al., 2014), and search-coil magnetometer (Le Contel et al., 2014) data for electric and
magnetic fields and Fast Plasma Investigation (FPI; Pollock et al., 2016) data for particles are used in the pre-
sent study. All the data are shown in GSM coordinates unless noted otherwise.

Figure 1 shows the DF event observed by the four MMS spacecraft from 06:06:00 to 06:07:00 UT. Due to the
small separation, four spacecraft provided very similar data. During the whole period, the x component of
the magnetic field is small (|Bx| < 5 nT; see Figure 1d) and the z component is dominant, indicating that
MMS were located in the neutral sheet. The DF was observed at ~06:06:24 UT when Bz increases dramatically
from 6 to 16 nT (Figure 1c). The negative spacecraft potential—an indication of the plasma number density
(e.g., Hwang et al., 2011)—decreases sharply during the DF crossing (Figure 1f). Using multispacecraft timing
analysis, we determine the normal velocity of the DF as 210.7 * [0.68, 0.68, �0.26] km/s (GSM). Considering
that the DF crossing lasts ~1.5 s, the DF thickness is about 316 km or equivalently 0.9 di, where di = c/ωpi is
the local ion inertial length, given the density of 0.3/cm3.

Figure 2 presents MMS1 observation of the DF crossing from 06:06:20.0 to 06:06:30.0 UT. As can be seen, Bz
stays steady at ~7 nT (Figure 2a) in the ambient plasma before 06:06:23.0 UT. The DF, characterized by sharp
increase of Bz from 6 nT to 16 nT (Figure 2a), is identified between 06:06:23.5 and 06:06:25.0 UT. Ahead of the
DF, a small Bz dip, indicated by the drop of Bz from 7 nT to 6 nT (Figure 2a), is clearly observed from
06:06:23.0 to 06:06:23.5 UT. The FPR behind the DF, characterized by strong Bz (~15 nT, Figure 2a), is encoun-
tered after 06:06:25.0 UT. Plasma density is displayed in Figure 2b, in which we see good agreement
between the ion and electron density. As can be seen, electron density is ~0.5/cm3 in the ambient plasma,
with little variation inside the Bz dip. Across the DF, such density drops sharply to ~0.3/cm3 (Figure 2b). This
DF features both a sharp Bz increase and a sharp density decease, comparable to the typical values (e.g., Fu
et al., 2012a; Runov et al., 2009).

Figures 2c and 2d show the ion and electron velocities. Note that the MMS/FPI ion data may be contami-
nated by background radiation, which can cause the distortion of the ion moments. In the event, we find
good agreement between the electron and ion density (Figure 2b) and no intense background radiation
in the ion spectrum (Figure 2h). We also find that the ions are magnetized in the ambient plasma and the
flux pileup region behind the DF (see discussion below). Therefore, the ion data in this event should be
reliable. As can be seen, the DF was embedded inside a small BBF. Ion velocity roughly stays at 200 km/s
in the ambient plasma but clearly decreases (from 220 km/s to 80 km/s; see Figure 2d) at the DF. This
localized reduction of ion velocity may indicate that ion jet is impeded by the DF, since the DF moves
slower than the BBF. Such ion-front interaction has also been reported by recent simulations (e.g., Drake
et al., 2014). Behind the DF, the ion velocity increases back to the background level. Electron velocity is
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fluctuating during the whole interval but clearly increases across the DF, with Vx, Vy, and Vz up to 1,500 km/s,
1,400 km/s, and 1,000 km/s, respectively (Figure 2c). Electron total velocity reaches up to ~2,000 km/s at
~06:06:24.1 UT (see the dashed line in Figure 2c). Note that the fast electron jet has scale comparable to
the DF thickness, consistent with DF current scale suggested by previous studies (e.g., Fu et al., 2012b;
Runov et al., 2011).

Figure 1. Four MMS spacecraft observations during 28 May 2017, 0606–0607 UT. MMS locations in (a) X-Z plane and (b) X-Y
plane in the GSM coordinates, respectively. The magnetic field components in the (c) zGSM, (d) xGSM, and (e) yGSM
directions; (f) the negative spacecraft potential indicative of the electron density. MMS1-MMS4 data are shown in black, red,
green, and blue, respectively.
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Figure 2. MMS1 observations of DF event from 06:06:20 to 06:06:30 UT. (a) The xGSM, yGSM, and zGSM components of
magnetic field; (b) electron and ion density; (c) the xGSM, yGSM, and zGSM components of ion velocity; (d) the xGSM,
yGSM, and zGSM components of electron velocity; (e) electron parallel temperature, perpendicular temperature, and total
temperature; (f) ion parallel temperature, perpendicular temperature, and total temperature; (g) electron spectrum; (h) ion
spectrum; (i) the xGSM, yGSM, and zGSM components of the electric field; (j) the power spectral density for magnetic field;
(k) the power spectral density for electric field. The red, cyan, white, and black lines in the bottom two panels represent fce,
0.5 fce, 0.1 fce, and flh, with fce and flh denoting the electron gyrofrequency and the lower hybrid frequency, respectively.
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Figures 2e and 2f display the electron and ion temperature. Clearly, electron parallel temperature is larger
than perpendicular temperature in the ambient plasma. Such parallel anisotropy gradually abates (parallel
temperature decreases, while perpendicular temperature increases) ahead of the DF and changes into iso-
tropy at the jet, possibly due to the adiabatic heating of electrons by contracting magnetic flux tubes (e.g.,
Fu et al., 2011). Behind the jet peak, electron parallel temperature is enhanced. Such increase of electron par-
allel temperature is not attributed to the influence of parallel anisotropy inside the ambient plasma since the
DF is typically a tangential discontinuity (e.g., Fu et al., 2012b; Khotyaintsev et al., 2011). It also cannot be
considered as a consequence of adiabatic effect because the magnetic field strength increases behind the jet
(Figure 2a). Inside the FPR, both the electron and ion perpendicular temperatures are slightly higher than
their parallel temperature, due to perpendicular heating resulting from the enhanced magnetic field
strength. During the whole event, we notice that no sharp change of electron temperature and electron
spectrum is observed across the DF, indicating that efficient electron heating/acceleration is absent in the
vicinity of the DF.

Figures 2i–2k show the DC electric field and high-frequency waves. In the quiet plasma sheet ahead of DF,
electric field is steady (Ex ~�2 mV/m, Ey ~1.5 mV/m, Ez ~0 mV/m; see Figure 2i). Inside the Bz dip, Ey drops
to 0.5 mV/m, while Ex and Ez remain constants. Across the DF, electric field increases dramatically, with Ex,
Ey, and Ez reaching 10 mV/m, 12 mV/m, and �5 mV/m, respectively (Figure 2i). This localized electric field
in the electron jet corresponds to the narrow band waves between flh and 0.1 fce (see Figure 2k). Such waves
are electrostatic, since no corresponding signatures are observed in the magnetic field spectrum (Figure 2j).
The electrostatic waves are typically attributed to lower hybrid drift (LHD) instability driven by the density
gradient at the front (e.g., Divin, Khotyaintsev, Vaivads, & André, 2015; Khotyaintsev et al., 2011; Zhou et al.,
2009). These LHD waves can heat electrons in the parallel direction (e.g., Divin, Khotyaintsev, Vaivads,
André, Markidis, et al., 2015) andmay account for the increase of electron parallel temperature behind the jet
(Figure 2e).

We further analyze the jet properties in a local DF coordinate system LMN. To establish this system, we per-
form the minimum variance analysis (MVA) on B, which yields L = [0.20, 0.11, 0.97], M = [0.63, �0.78, �0.04],
and N = [0.75, 0.63, �0.22]. The ratio between the intermediate eigenvalue and the minimum eigenvalue is
about 102, indicating that the MVA analysis is reliable. Also, the ratio between the maximum eigenvalue and
the intermediate eigenvalue is about 44, meaning that the DFmight be a 1-D structure (Sonnerup & Scheible,
1998). The DF normal direction obtained from the MVA analysis is approximately consistent with that from
timing analysis (see also Fu et al., 2012b).

We investigate the ion and electron velocity in the LMN coordinates in Figures 3b–3d. As can be seen, the
fast electron jet (Ve ~2,000 km/s) is along the DF tangential direction (Figure 3c), same as the current direc-
tion reported in previous studies (e.g., Fu et al., 2012b; Runov et al., 2011). In the normal direction, we see
that the electron velocity keeps roughly steady across the DF (Figure 3c). Interestingly, there is an electron
flow in the L direction at the DF (~1,000 km/s; see Figure 3d). This electron flow may result in a parallel cur-
rent at the DF that is theoretically associated with the DF (e.g., Sun et al., 2013). We further investigate the
frozen-in condition and the electric-field structure using the generalized Ohm’s law (Figures 3e–3g). Clearly,
the frozen-in condition for ions is valid inside the ambient plasma and the FPR but is broken at the DF. The
Hall effect dominates at the DF, indicating that the frozen-in condition for electrons approximately holds,
consistent with previous studies (e.g., Fu et al., 2012b; Yao et al., 2017). The electric field is dominated by
En (up to 16 mV/m; see Figure 3f), mainly attributed to the Hall effect at the front (e.g., Fu et al., 2012b;
Lu et al., 2013). El is almost zero during the whole interval (Figure 3g), indicating the absence of parallel
electric field. Em changes smoothly across the DF (Figure 3e) and probably is related to the dawn-dusk
electric field in the magnetotail.

Figures 3h–3j display the current structure in LMN coordinates. We compare the four-spacecraft averaged
current calculated from the particle moments J = qe � ne�(Vi � Ve), with that from curlometer (Figures 3h–3j).
We find that the results from the two methods are in good agreement. Since electrons move much faster
than ions (see Figures 3b–3d), the current at the DF is primarily carried by the fast electrons. This is consistent
with previous suggestions (e.g., Zhang et al., 2011). In fact, the DF current (Figures 3h–3j) has a very similar
tendency as the electron velocity (Figures 3b–3d). We notice that the current at the DF is primarily in the tan-
gential plane (Jm is up to 100 nA/m2; see Figure 3h), consistent with previous observations (e.g., Fu et al.,
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2012b). A bipolar signature of Jl—known as localized ring-current—is observed in the jet (Figure 3j). This
localized ring-current, primarily in the L direction, can cause the decrease of Bm at the front, as observed in
Figure 3a.

Due to the strong electric field and current at the front, energy conversion may occur at the DF. We calculate
the conversion term, E·J, by using the current from MMS1 particle moments (Figure 4b) and curlometer
(Figure 4c), respectively. Results from the two methods are roughly similar, and their differences stem from
the fact that MMS1 cross the DF current sheet a little bit differently than the other three spacecraft. As can
be seen, strong energy conversion is observed in the tangential and normal directions at the DF. This

Figure 3. Investigations of electron properties in the LMN coordinates. (a) The Bl, Bm, and Bn components of magnetic field;
the (b) n, (c) m, and (d) l components of ion velocity and electron velocity, respectively; the (e) El, (f) Em, and (g) En
components of electric field; the (h) n, (i) m, and (j) l components of current density from curlometer Jcur (blue) and from
particle moments Jmom (black), respectively. The blue (green, black, and red) lines in Figures 3e–3g describe the electric
field from EDP (convection term, electron pressure gradient term, Hall term).
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conversion is positive (E · J> 0), indicating the energy transfer from themagnetic field to particles, consistent
with previous studies (e.g., Huang, Fu, et al., 2015; Khotyaintsev et al., 2017; Sitnov et al., 2009).

To date, the contribution of ion and electron currents to energy conversion remains an open issue, owing
to the lack of electron-velocity measurements. The MMS high-resolution measurements of electron velo-
city for the first time enable us to investigate this issue. We do this by calculating the energy conversion
contributed by ion current (E · Ji) and electron current E · Je (Figure 4e), respectively. As can be seen, the
ion-current-driven energy conversion (E · Ji ≈ 80 pW/m3) is observed in the normal direction at the front
(Figure 4e). Such energy conversion (E · Ji > 0) is consistent with the picture that the normal electric field
can reflect and accelerate the surrounding ions (e.g., Fu et al., 2012b; Zhou et al., 2010). Strong electron-
jet-driven energy conversion (E · Je ≈ 150 pW/m3) is also observed in the tangential plane (Figure 4d).
Note that the electron jet contributes to two-thirds of energy conversion at the DF. Since no increase
of electron temperature is observed at the front (Figure 2e), the energy conversion in the tangential
plane may thus lead to electron acceleration, that is, consequent increase of the bulk velocity and forma-
tion of the jet.

3. Summary

The fast electron jet has been reported at DFs in previous simulations (e.g., Divin, Khotyaintsev, Vaivads,
André, Markidis, et al., 2015; Drake et al., 2014; Sitnov et al., 2009) but never been observed by spacecraft.
In this study, using MMS measurements, we present the first observation of fast electron jet (Ve ~2,000 km/s)
at the DF. Such jet, with scale comparable to the DF thickness (~0.9 di), is primarily in the tangential plane.
Since electrons are approximately magnetized across the DF, the fast electron jet mainly undergoes the
E × B drift motion due to large normal electric fields at the DF.

Figure 4. Partition of energy conversion at the DF in LMN coordinates. (a) The Bl, Bm, and Bn components of magnetic field;
(b and c) energy conversion resolved using particle moments (E · Jmom) and Curlometer (E · Jcur); (d and e) partition of
energy conversion to electrons (E · Je) and ions (E · Ji).
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The electron jet is responsible for the current system at the DF. We find that the role of strong current carried
by electron jet in plasma dynamics at the front is significant. For example, it may lead to the current-driven
mode instability (the LHD waves) (e.g., Divin, Khotyaintsev, Vaivads, André, Markidis, et al., 2015; Fu et al.,
2017), which are indeed observed in this event. The electron-jet-driven current system includes a localized
ring-current in the L direction, which causes the rotation of the magnetic field line. The electron current
contributes to two-thirds of the energy conversion at the DF. This indicates that energy conversion at the
DF is dominated by electron current, rather than the ion current suggested in previous studies (e.g.,
Khotyaintsev et al., 2017; Li et al., 2016; Sitnov et al., 2009).
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