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Abstract Alfvén wings are known to form when a conducting or mass-loading object slows down a
flowing plasma in its vicinity. Alfvén wings are not expected to be generated when an inert moon such as
Rhea interacts with Saturn’s magnetosphere, where the plasma impacting the moon is absorbed and the
magnetic flux passes unimpeded through the moon. However, in two close polar passes of Rhea, Cassini
clearly observed magnetic field signatures consistent with Alfvén wings. In addition, observations from a
high-inclination flyby (Distance> 100 RRh) of Rhea on 3 June 2010 showed that the Alfvén wings continue to
propagate away from Rhea even at this large distance. We have performed three-dimensional hybrid
simulations of Rhea’s interaction with Saturn’s magnetosphere which show that the wake refilling process
generates a plasma density gradient directed in the direction of corotating plasma. The resulting plasma
pressure gradient exerts a force directed toward Rhea and slows down the plasma streaming into the wake
along field lines. As on the same field lines, outside of the wake, the plasma continues to move close to its
full speed, this differential motion of plasma bends the magnetic flux tubes, generating Alfvén wings in
the wake. The current system excited by the Alfvén wings transfers momentum to the wake plasma
extracting it from plasma outside the wake. Our work demonstrates that Alfvén wings can be excited even
when a moon does not possess a conducting exosphere.

1. Introduction

Rhea with a mean radius of 763.8 km is the second largest satellite of Saturn. A mean density of 1.236 ± 0.005
g/cm3 implies that its interior contains a rock metal fraction of ~25%, whereas a normalized axial moment of
inertia of 0.3911 ± 0.0045 hints at an interior which is mostly nondifferentiated [Anderson and Schubert, 2007].
The surface of Rhea is heavily cratered and the average cratering model ages derived from the plains are on
the order of 3.6–4.2 Gyr [Neukum et al., 2005; Zahnle et al., 2003]. Spectral observations of the surface in the
visible to infrared frequencies show that Rhea’s surface is less contaminated by exogenous materials such as
CO2 and hydrocarbons derived from Saturn’s E ring than is Dione’s surface [Scipioni et al., 2014], because Rhea
is located in the more tenuous part of Saturn’s E ring. Scipioni et al. also show that there is much less
asymmetry in terms of albedo and ice grain size between the leading and trailing hemispheres of Rhea
compared to Dione, presumably for the same reason. The trailing hemisphere of Rhea is marked by several
large bright filaments called wispy terrain which were thought to have a cryovolcanic origin [Smith et al.,
1981]. However, high-resolution images from Cassini reveal that the region is composed mainly of troughs
and grabens with deposits of resurfaced bright ice covering the scarps [Wagner et al., 2007, 2010]. Thus,
Rhea appears to be a geologically inactive moon and no active internal sources of plumes or atmosphere
generation are expected to be currently present on this moon.

The tenuous O2 and CO2 exosphere measured by Cassini during its 2 March 2010 flyby [Teolis et al., 2010]
corroborates this picture of a nonactive moon. The estimated mean column density of O2 from this flyby
was ~3 × 1016/m2 which is 2 orders of magnitude below that encountered at Europa or Ganymede [Teolis
et al., 2010] and 4 orders of magnitude below the water column density observed at Enceladus [Hansen
et al., 2011]. With such a weak source of ambient neutrals, plasma production and loss is also expected to
be minimal at Rhea. For example, the peak ion flux was measured to be j≈ 1011 particlesm�2 ster�1 s�1

during the first flyby of Rhea [Teolis et al., 2010] and lasted over a segment of ~200 km of the flyby.
Assuming that the source extended over a length L= 2 RH in the direction transverse to the trajectory
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(most likely an overestimate), the upper limit on the escaping number flux is _n ¼ 8πjLRRH ≈ 2× 1023/s which
translates into an upper limit on mass outflow of only 10 g/s assuming an average mass of 18 AMU for the
ions. Simon et al. [2012] have calculated the implied height integrated Pedersen conductance of Rhea using
the neutral density model of Teolis et al. [2010] and place an upper limit of 0.43 S on its value which is a factor
of ~50 smaller than the Alfvén conductance of the plasma in Rhea’s environment. Thus, both remote sensing
and in situ measurements of Rhea’s atmosphere suggest that Rhea appears neither a conducting (because of
the noncollisional nature of its very sparse exosphere) nor a mass-loading object to the corotating plasma of
Saturn’s magnetosphere.

Rhea is located in the inner magnetosphere of Saturn at an average radial distance of 8.74 RS (1 RS= average
radius of Saturn = 60,268 km). The local plasma density in the magnetosphere near Rhea is between 4 and
8 cm�3 [Wilson et al., 2008; Persoon et al., 2013; Roussos et al., 2012] and consists mostly of water group ions
produced by the Enceladus plume source. Because the Keplerian speed of Rhea is much lower than the
corotating plasma, the plasma overtakes Rhea at a relative speed of ~57 km/s and predominantly strikes its
trailing hemisphere. Saturn’s magnetospheric field is directed predominantly southward and has a strength
of ~20 nT near Rhea. The Alfvénic and magnetosonic wave speeds of the plasma are 46 km/s and 65 km/s. As
the magnetosonic Mach number of plasma is lower than unity, no upstream shock is expected to be
generated during the interaction.

Cassini has made four close flybys (CA distance< 5 RH) and a distant flyby of Rhea. The first close flyby (R1)
occurred on 26 November 2005 and took Cassini through Rhea’s central wake. This flyby confirmed the
picture of Rhea as an inert moon that intercepts the corotating plasma and creates a plasma depleted region
in the downstream region [Khurana et al., 2008]. The observations showed that magnetic field passes through
the inert moon unimpeded and gets further strengthened in the wake region in order to conserve total (mag-
netic + thermal) pressure. The next two close flybys (R2 on 2 March 2010 and R3 on 11 January 2011) were
polar flybys and have been analyzed by Simon et al. [2012] and recently by Teolis et al. [2014]. These flybys
confirmed that the field is indeed strengthened on field lines that are in contact with Rhea and have lost
plasma. In addition, two new surprises emerged from these flybys, which are as follows: (1) an Alfvénic per-
turbation is formed in the wake side of Rhea [Simon et al., 2012], a topic we revisit in this work, and (2) near the
equatorial edges of Rhea, a sharp field-aligned current system forms from the asymmetric precipitation of
ions and electrons onto Rhea because of their differing gyroradii [Teolis et al., 2014]. Ions precipitate more uni-
formly onto Rhea because of their large gyroradii, while the electrons are constrained to flow north/south
along the field lines. This difference creates a flow of ions toward the equatorial plane of Rhea to replenish
the ions lost in that region. The resulting charge imbalance on Rhea’s surface is remedied by field-guided
electrons that precipitate onto Rhea’s low-latitude rim [Teolis et al., 2014].

The fourth (and final) close flyby of Rhea (R4) which took Cassini on a highly inclined (moving south to north)
trajectory with a closest approach on the anti-Saturn side occurred on 9 March 2013 (CA distance = 2.31 RH)
and did not display any moon-related perturbations as expected for such a trajectory. However, a flux inter-
change event that occurred a few minutes after the CA makes it difficult to draw any definite conclusions. In
this work, wewill further analyze themagnetic field and energetic particle data from the R2 and R3 polar flybys
of Rhea to understand the Alfvénic perturbations generated in the wake. Cassini Plasma Spectrometer (CAPS)
instrumentdidnotdetect pickup ionsduring thepolarflybys [Teolis et al., 2010], thoughwenote that the instru-
ment pointing was not optimal for such a detection. Valuable energetic particle data from the MIMI/LEMS
instrument were obtained during these flybys and are analyzed in this study. Next, we show that Cassini for-
tuitously passed through Rhea’s Alfvén wing on a distant flyby (CA distance = 102 RRH) on 3 June 2010. The
distant flyby confirms that momentum is exchanged between the plasma in the wake and the plasma outside
of the wake on field lines that pass through the wake. Finally, we present results from a state-of-the-art,
hybrid simulations to understand the behavior of plasma in the wake and the generation of Alfvén wings.
We show that the slowdown of plasma in Rhea’s wake plays a central role in the generation of Alfvén wings.

2. Trajectories and Observations

Figure 1 shows the trajectory of Cassini during the R2 and R3 flybys in a Rhea-centric coordinate system called
RHIS (RHea Interaction System) described in the figure caption. The spacecraft traveled over the north pole of
Rhea during the R2 flyby (CA distance = 1.13 RRH) and below the south pole during the R3 flyby (CA
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distance = 1.09 RRH). Near the closest
approach, the spacecraft was located
on field lines that intersected Rhea and
had lost some of their plasma.

Figure 2 shows magnetic field data from
the R2 flyby in the RHIS coordinate
system. The most noticeable aspect of
the figure is the ~2 nT enhancement of
field strength during the interval when
the spacecraft was located on field
lines intersecting Rhea. As discussed by
Khurana et al. [2008] and Simon et al.
[2012], field enhancements occur on
field lines that are either in contact with
Rhea or were in contact with Rhea in the
past (i.e., on flux tubes encountered in
Rhea’s wake) and have lost plasma.
This can be understood from the view-
point of force balance in the vicinity of
Rhea. As the gradients of plasma pres-
sure p and magnetic pressures (B2/2μ0)
are two of the dominant forces in
Rhea’s environment and oppose each
other, one expects

∇ pþ B2

2μ0

� �
≈0 (1)

Figure 1. The trajectory of Cassini (red arrows) during the two polar flybys
of Rhea. Near the closest approach, the spacecraft was located on field
lines which are connected to Rhea. Sharp field-aligned currents were
observed near the edges of Rhea. Rhea’s size has been greatly exagger-
ated with respect to Saturn. Also illustrated is the coordinate system
called the Rhea interaction system (RHIS, green arrows) whose x axis
points along the corotation direction of plasma, y axis points toward
Saturn, and the z axis lies along the spin pole of Saturn. The coordinate
system is centered at the moon’s center, and the distances in this
coordinate system are measured in terms of Rhea radii (RRh).

Figure 2. Magnetic field observations in Rhea Interaction System (RHIS) coordinates during the northern R2 flyby. The
spacecraft remained downstream and north of Rhea (Z> 1.1 RH) during the closest approach segment. The vertical
solid lines mark the times when the spacecraft was located at Y =�1 RRH and Y = 1 RRH, respectively. The dashed lines
represent the background field near Rhea and were obtained by fitting first-order polynomials to observations in the
vicinity of Rhea from which near-Rhea (R< 2.5 RRH) observations were excluded. The CA occurred at 17:40:36.
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or

pþ B2

2μ0

� �
≈const (2)

Thus, any reduction in plasma pressure caused by particle loss is compensated by an increase of magnetic
field strength in that region. The other two remarkable features in the observations are two sharp field rota-
tions observed in the Bx component around hours 17:39 and 17:42 caused by localized pairs of field-aligned
currents. Teolis et al. [2014] have shown that the sharp current system results from differences in ion and
electron gyroradii and the requirement to balance currents on the sharp Rhea surface. The ions, because
of their large gyroradii, precipitate (almost) uniformly on to Rhea from all directions, while the electrons
are constrained to move north/south along the field lines. This difference in precipitation pattern causes a
deficit of ions in the region surrounding Rhea. On field lines in this near-contact region, ions move along
the field (both from north and south) to compensate for this loss near Rhea, creating a field-aligned current
directed toward the equatorial plane of Rhea. Similarly, to compensate for the ion deposition on Rhea,
electrons move along the field lines that are in direct contact with Rhea creating an oppositely directed
current to that of ions (directed away from Rhea’s equatorial plane). The current system is closed at large
distances from Rhea by whistler type waves [Teolis et al., 2014]. Indeed, Santolík et al. [2011] have reported
the presence of such whistler type waves in the RPWS (Radio and Plasma Wave Science) data collected from
the R2 flyby during the interval when Cassini was located on flux tubes connected to the surface of Rhea.

A final remarkable feature of the observation is the negative Bx perturbation observed on field lines that are in
contact with Rhea. As pointed out by Simon et al. [2012], this feature is caused by an Alfvénic perturbation
and is reminiscent of Alfvén wings usually observed at mass-loading bodies such as Io or Enceladus from
plasma loading [Neubauer, 1980, 1998; Khurana et al., 2007]. Indeed, the draping of field around an obstacle
creates a negative Bx field above the draping center (z> 0) and a positive Bx component below it, consistent
with observations at Rhea. We return to the question of how the Alfvén wing is generated in the absence of
mass loading, later.

Observations from the R3 flyby which traversed Rhea over its southern pole are shown in Figure 3 and
confirm the findings from the R2 flyby. The magnetic field is again enhanced within the flux tubes that are

Figure 3. Magnetic field observations in Rhea Interaction System (RHIS) coordinates during the southern R3 flyby. The
spacecraft remained downstream and south of Rhea (Z<�1.04 RH) during the closest approach segment. The vertical
solid lines mark the times when the spacecraft was located at Y =�1 RRH and Y = 1 RRH, respectively. The dashed lines
represent the background field near Rhea and were obtained by fitting first-order polynomials to observations in the
vicinity of Rhea from which near-Rhea (R< 2.5 RRH) observations were excluded. The CA occurred at 04:53:34.
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in contact with Rhea and have lost plasma. The sharp current systems generated by the precipitation of ions
onto Rhea from adjacent flux tubes are also present on field lines that traverse the equatorial boundary of
Rhea. Finally, a positive Bx component (opposite to that of R2 flyby) is observed on field lines for which
XHIS> 0, expected of an Alfvén wing.

Figure 4. (top) Energetic electron fluxes from the C1 channel (27–48 keV) of Cassini MIMI/LEMMS instrument andmagnetic
field observations from Cassini magnetometer during the R2 and R3 flybys. The vertical dashed lines mark the region
between �1 RRH< YRHIS< 1 RRH.

Figure 5. (first panel) Energetic electron observations from C0 to C4 channels of MIMI/LEMMS instrument and (second to
fourth panels) magnetic field observations (in RHIS coordinates) from the Cassini magnetometer during the distant flyby
of Rhea’s Alfvén wing which occurred on 3 June 2010. The spacecraft was at a distance of 102 RRH from Rhea during
the Alfvén wing encounter. The spacecraft was southward (ZRHIS =�69.3 RRH) and well downstream (XRHIS = 66.5 RRH) of
Rhea during the encounter.
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In Figure 4, we compare and contrast
the observations from the two polar
flybys by plotting them against the
YRHIS coordinate. Also plotted are differ-
ential fluxes in the 27–48 keV electron
channel observed by the MIMI/LEMMS
instrument. A clear correlation is
observed between particle loss and field
enhancement (as seen in more negative
Bz component). The reversal of the Bx
perturbation between the two flybys is
also amply clear, demonstrating that
the draping center (where Bx reverses)
is located near the equatorial plane
of Rhea.

One of the key questions about the
observed Alfvénic perturbations is
whether they are local in extent, with
the current systems confined in the
immediate region surrounding Rhea, or
connect the source region near Rhea
to Saturn’s ionosphere (the ultimate
source of angular momentum for the
Kronian plasma). An examination of
field and particle data from the vicinity
of Rhea revealed that during a distant
pass of Rhea on 3 June 2010, Cassini
crossed the Southern Alfvén wing of
Rhea when it was at a radial distance
of 102 RRH from Rhea, suggesting that
the Alfvénic perturbations indeed con-
tinue to large distances and very likely
close in Saturn’s ionosphere. Figure 5
shows magnetic field and energetic

electron observations while Figure 6 shows the spacecraft trajectory during this crossing. It can be seen that
during the crossing, all five energetic electron channels (energies 18–183 keV) observed electron flux deple-
tions (see Figure 5, first panel), as would be expected of Saturn’s flux tubes that had earlier come into contact
with Rhea and had become depleted of energetic electrons. The magnetic field data (in Saturn-centered
spherical coordinates) show a clear positive Bφ perturbation (implying Bx> 0) as expected from an Alfvén
wing propagating southward. The Bφ perturbation has a magnitude of ~0.7 nT (roughly one third of the
amplitude observed near Rhea during R2 and R3 flybys). To some extent, the reduction in the Alfvén wing
amplitude is caused by the increase of Alfvén velocity away from the center of Saturn’s plasma sheet (we esti-
mate the local Alfvén velocity to be twice that observed near Rhea) because the wave energy flux (Bx

2/
μ0× VA) must be conserved.

In order to establish the source location of the Alfvén wing, we have traced the perturbation region back to
the equatorial plane of Rhea along the southern Alfvén wing characteristic given by

Vþ
A ¼ V0 þ B0=

ffiffiffiffiffiffi
μρ

p
(3)

and overplotted it on Figure 6 (top, dashed line). Here we chose B0= (0, 0, 25 nT), and an average plasma
density, n= 5/cm3 [Wilson et al., 2008; Persoon et al., 2013]. The Alfvénic Mach number is estimated to be
~0.96 (assuming an average mass of ion to be 17 proton masses and plasma velocity, V0 = (57, 0, 0) km.
The angle θA between B0 and VA

+ is thus equal to 44°. Here we have used field and plasma parameters that
are averaged over the extent of the Alfvén wing. Away from the center of Saturn’s plasma sheet, where the

Figure 6. The trajectory of Cassini in RHIS coordinate system (thick black
line) during 18:30–20:00 on 3 June 2010. The black solid circle marks
the passage through the Alfvén wing. The southern part of the Alfvén
wing is drawn with a dashed line which corresponds to an Alfvén Mach
number of 0.96.
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Alfvén wing signature was discovered
(Saturn latitude �6°), the plasma den-
sity is expected to be lower (by a factor
of 2) and the observed field strength
(~30 nT) is slightly higher. Thus, the
value of θA used in Figure 6 is a rough
average. With this choice of field and
plasma parameters, we find that the
Alfvén wing is connected to the wake
of Rhea and not Rhea itself. However,

we caution the reader that the uncertainties in our knowledge of the plasma parameters are quite large
and the only definitive conclusion that can be drawn from this mapping is that for a range of reasonable
choices of field and plasma parameters, the origin of the Alfvén wing from the wake is not excluded. We also
note here that the Alfvén wing was not observed at YRHIS = 0, but further inward toward Saturn. This is
expected because the Alfvén wave packet travels toward Saturn along the field line as it moves away from
Rhea. The observed location of the Alfvén wing at YRHIS = 31 RRH is roughly consistent with the local field line
geometry such that |By/Bz| = |dy/dz|≈ |YRHIS/ZRHIS|≈½.

As discussed above, Rhea is a nonconducting object and also does not mass load the interacting plasma
appreciably. Therefore, the discovery of an Alfvén wing in Rhea’s wake in the absence of these “traditional”
sources of field draping is indeed very surprising. Simon et al. [2012] have suggested that the plasma
density gradient arising from the finite extension of Rhea’s wake creates a diamagnetic current Jdia according
to the relation

Jdia ¼ B�∇p
B2

≈
1
B0

∂p
∂x

ey (4)

where they justifiably assumed that the
perturbation field is weak, so that |B|
= |B0|. Simon et al. suggest that such a
diamagnetic current is responsible for
generating the Alfvénic perturbations
observed in Rhea’s wake. We do not dis-
agree with Simon et al. that diamagnetic
currents are generated near Rhea in
response to the pressure gradients that
are set up in the wake. However, we
observe that in most situations, the dia-
magnetic currents tend to close locally
around the source of diamagnetism
and do not propagate away from the
source as field-aligned currents. The
exception to this rule, as discussed by
Vasyliunas [1970], is a situation where
the plasma pressure gradient has a
component along the direction of
B×∇B drift of particles. Such a situation
occurs in a partial ring current in a
magnetosphere where the nonuniform
(dipolar) magnetic field sets up a
B×∇B drift of particles in the azimuthal
direction and any pressure anomaly in
that direction leads to the generation
of a field-aligned current that closes
into and out of the ionosphere at
the edges of the partial ring current.

Table 1. Magnetic Field and Plasma Conditions Near Rhea Used in
Hybrid Simulations

Parameter Values for R2 Values for R3

Ion number density 7/cm3 7/cm3

Bulk velocity (50,0,0) km/s (50,0,0) km/s
External magnetic field (4.5, 1.7,�20.0) nT (1.0, 0.5,�20.0) nT
Ion temperature 200 eV 100 eV
Electron temperature 10 eV 10 eV
Plasma beta 1.4 0.7

Figure 7. Magnetic field observations from the R2 flyby (black lines) and
results from our hybrid simulation (red lines) in the RHIS coordinate
system described in Figure 1.
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This situation does not apply to Rhea’s
interaction with Saturn’s magneto-
sphere where over the length scale of
Rhea, the background field is essentially
uniform (and assumed as such by Simon
et al. in their simulation). On the
other hand, we have now observed the
Alfvénic perturbation far away from
Rhea (x distance ~70 RH) where the
wake has dissipated. The observed field
perturbation at this large distance is
reminiscent of Alfvénic wings that trans-
fer momentum between two plasma
populations such as the stationary iono-
sphere of a moon and the flowing
plasma of a magnetosphere. We there-
fore suspect that the origin of the
Alfvén wings lies in plasma slowdown
created by the pressure gradient force,
a term ignored by Simon et al. [2012]:

ρ
dv
dt

¼ �∇pþ J�B (5)

Equation (5) states that the pressure
gradient force would accelerate plasma
in the �x direction (toward Rhea), in
opposition to the background plasma
flow and would thus slow it down. In
this scenario, the Alfvén wings would

be generated in the wake to bring the slowed wake plasma back to corotation speed. Thus, reliable plasma
flow velocity measurements near Rhea would be of great value in unraveling the mystery of Alfvén wings
near Rhea. Unfortunately, because both the ion flux counts are extremely low in the wake and the time reso-
lution of the CAPS instrument is quite low (several minutes for each distribution function), it was not possible
to obtain reliable estimate of plasma flow in the wake. We will therefore rely on fully self-consistent hybrid
simulations to infer the properties of plasma flow in the vicinity of Rhea and arrive at an understanding of
stress balance in the plasma surrounding Rhea.

3. Hybrid Simulations

In this work, we use a three-dimensional hybrid plasma simulation first introduced by Holmström et al. [2012]
for studies of solar wind interaction with the Moon. In this model, ions are treated as positively charged
macroparticles and electrons are a massless charge-neutralizing fluid. The ion trajectory is obtained from
the ion momentum equation:

dv
dt

¼ q
m

Eþ v�Bð Þ (6)

where q,m, and v are ion charge, mass, and velocity, respectively, E is the electric field, and B is the magnetic
field. We treat Rhea as a highly resistive (conductivity σ=10�7 S/m), plasma-absorbing body. The electric field
is given by

E ¼ 1
ρI

�JI�Bþ μ�1o ∇�Bð Þ�B� ∇pe
� �þ ∇�B= μ0ð Þ (7)

Where ρI is the ion charge density, JI is the ion current, pe is the electron pressure, and μo is the magnetic
permeability of free space. Here electron pressure pe is assumed to be adiabatic with an adiabatic index
γ =5/3, such that

Figure 8. Magnetic field observations from the R3 flyby (black lines) and
results from our hybrid simulation (red lines) in the RHIS coordinate
system described in Figure 1.
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pe
pe0

¼ ne
ne0

� �γ

(8)

where the zero subscript denotes the reference value at the inflow boundary upstream of Rhea. Themagnetic
field is advanced using the Faraday’s law:

δB
δt

¼ �∇�E (9)

We use a uniform Cartesian grid with 108 × 108 × 144 cells (each with a scale size of 95 km) and discretize the
spatial derivatives using a standard second-order finite difference scheme. The simulation has open
inflow/outflow boundaries in X and periodic boundaries in Y and Z. The calculations are advanced in time
by a predictor-corrector method using cyclic leapfrog method, as explained by Holmström et al. [2012],
[see also Matthews, 1994]. Further information of the numerical model can be found in Holmström [2010].
The upstream field and plasma conditions used in the simulation are given in Table 1.

Figures 7 and 8 show a comparison of magnetic field observations and simulation results. As can be seen, the
simulation reproduces all three components of the magnetic field quite well and gives us confidence that our
simulation is capturing the underlying physics correctly. Because of the low resolution of the grid used and
also because full electron dynamics are not captured in our simulations (because electron pressure is a scalar
in our equations as opposed to a tensor), we are unable to reproduce the sharp spikes at the edges of Rhea
generated by the imbalance of surface current and the resulting field-aligned currents. However, the
enhancement of the field strength by the plasma cavity and the Bx perturbation generated by the Alfvén
wings are clearly present in our simulations. We note that in our model, Rhea’s conductivity is extremely
low (σ= 10�7 S/m). In addition, there are no sources of plasma pickup. Therefore, we conclude that in our
simulation, the Alfvén wings were not generated by these two “traditional” sources of plasma slowdown in
the vicinity of a moon and we must look for other causes.

Figure 9 shows the normalized plasma density, velocity, and field strength in the XY plane (Z=0, a, c, and e)
and XZ plane (Y= 0, b, d, and f) of our simulation box. The formation of the wake from the absorption of

Figure 9. (a, c, and e) XY plane (at Z = 0) and (b, d, and f) XZ plane (at Y = 0) cuts through our simulation box for normalized
plasma density (Figures 9a and 9b), normalized plasma velocity (Figures 9c and 9d) and normalized magnetic field
(Figures 9e and 9f). The wake extends to a downstream distance of at least 4 RRH before dissipating.
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plasma by Rhea is extremely clear in
plasma density (Figures 9a and 9b).
Equally clear is the magnetic field
enhancement that occurs in response
to loss of plasma (Figures 9e and 9f).
The wake is much wider in the direction
of the magnetic field (Z direction) than
across it, because in a submagnetosonic
interaction, particles with large field-
aligned velocities that were initially
located far above or far below the moon
can precipitate onto the moon over the
time the field line is in contact with the
moon (as explained further by Khurana
et al. [2008]; also, see their Figure 9)
creating a wide field-aligned plasma
shadow downstream. The most notice-
able and surprising aspect of Figure 9
in this manuscript is the substantial
decrease in plasma velocity (as much
as 30% between 1 RRh< X< 2 RRh, see
Figures 9c and 9d) in the wake region
as we surmised earlier. The other feature
in Figure 9 is the bending of the field
lines in the wake region seen in the XZ
plane (see panel Figure 9f, where we
have traced magnetic field lines) clearly
reminiscent of Alfvén wing type pertur-
bations. In Figure 10, we have quantified
the bend angle of the field lines
observed in the wake region. The actual

bending of the field lines is quite modest (6° or less) suggesting a weak field-aligned current system.
However, the front across which the bend occurs is clearly aligned with the Alfvén characteristics. The
simulations thus unambiguously confirm that the source of Alfvénic perturbations is the plasma slowdown
in the wake of Rhea. The plasma slowdown results undoubtedly by the action of the plasma pressure force

in accordance with equation (5), ρ dv
dt ¼ �∇pþ J�B, where the plasma pressure force (�∇p) is directed in

the �X direction, because in the near wake the plasma pressure is close to zero, but at large X distances
(>4 RRH), the plasma density and therefore the plasma pressure have returned to their normal values. The
pressure gradient force is in opposition to the direction of the background flow (+X) and thus decelerates
it. A field line in the wake, therefore, has slower plasma on it near the equatorial plane of Rhea. However,
at large Z values, the flow and the field line are moving at the full background plasma velocity. One can
expect a kink to develop in the field line that would try to accelerate the slowed plasma near the equatorial
plane of Rhea. The momentum for this process is obtained from the background plasma in the Alfvén wings
that ultimately close in the ionosphere of Saturn. Thus, we conclude that Saturn’s ionosphere is the ultimate
source of momentum for the weak Alfvén wings that are generated in Rhea’s wake.

4. Summary and Conclusions

In this work we have shown that Alfvén wing type structures can form in the wake of an inert object such as
Rhea. The primary cause of the formation of these structures is the plasma pressure reduction in the wake of
the moon resulting from plasma absorption on field lines that come into contact with Rhea. Because of the
low sonic and magnetosonic Mach numbers of upstream plasma, the wake gets refilled in a short
downstream distance (typically 4–6 RRH) from plasma that flows along the field lines. However, in the near
wake, the plasma pressure remains depressed compared to the far wake. The resulting pressure gradient

Figure 10. The magnitude of field line bend (in degrees) relative to the
background field direction. The near constancy of field line bend in the
downstream direction is consistent with the excitation source of Alfvén
wings (namely, plasma slowdown) located in the wake region.
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force is directed toward Rhea and decelerates the wake plasma. Outside of the plasma wake, the plasma
moves at its background velocity generating an Alfvén wing that bends the magnetic flux tubes and
transfers momentum from the ambient plasma to the wake. A distant high-inclination flyby encountered
the Alfvén wing at a distance of 102 RRh revealing that the Alfvén wing currents are ultimately closed far
away from Rhea, most likely in Saturn’s ionosphere.

The discovery of momentum transfer mediated by Alfvénic perturbations in Rhea’s wake suggests that such
structures must also occur in the wakes of other inert moons such as Mimas, Dione, and Tethys. Recently,
Zhang et al. [2014] using a comprehensive field and plasma data from the ARTEMIS mission (Acceleration,
Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun mission) have shown
that similar structures exist in the wake of the Earth’s moon even though the solar wind is supermagnetoso-
nic and the wake plasma depletion continues for at least 12 lunar radii. Those observations also confirmed
that the solar wind is slowed down in the lunar wake, and Alfvénic perturbations are launched from the wake
center. Thus, Alfvén wings should be considered ubiquitous in all situations where a moon interacts with a
flowing plasma irrespective of whether the moon has a conducting exosphere or not.

References
Anderson, J. D., and G. Schubert (2007), Saturn’s satellite Rhea is a homogeneous mix of rock and ice, Geophys. Res. Lett., 34, L02202,

doi:10.1029/2006GL028100.
Hansen, C. J., et al. (2011), The composition and structure of the Enceladus plume, Geophys. Res. Lett., 38, L11202, doi:10.1029/2011GL047415.
Holmström, M. (2010), Hybrid modeling of plasmas, in Numerical Mathematics and Advanced Applications 2009: Proceedings of ENUMATH,

the 8th European Conference on Numerical Mathematics and Advanced Applications, Uppsala, 2009, edited by G. Kreiss et al., pp. 451–458,
Springer, Berlin, Heidelberg, New York.

Holmström, M., S. Fatemi, Y. Futaana, and H. Nilsson (2012), The interaction between the Moon and the solar wind, Earth Planets Space, 64,
237–245, doi:10.5047/eps.2011.06.040.

Khurana, K. K., M. K. Dougherty, C. T. Russell, and J. S. Leisner (2007), Mass loading of Saturn’s magnetosphere near Enceladus, J. Geophys. Res.,
112, A08203, doi:10.1029/2006JA012110.

Khurana, K. K., C. T. Russell, and M. K. Dougherty (2008), Magnetic portraits of Tethys and Rhea, Icarus, 193, 465–474, doi:10.1016/
j.icarus.2007.08.005.

Matthews, A. (1994), Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations, J. Comput. Phys., 112,
102–116, doi:10.1006/jcph.1994.1084.

Neubauer, F. M. (1980), Nonlinear standing Alfvén wave current system at Io: Theory, J. Geophys. Res., 85, 1171–1178, doi:10.1029/
JA085iA03p01171.

Neubauer, F. M. (1998), The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res., 103,
19,843–19,866, doi:10.1029/97JE03370.

Neukum, G., R. J. Wagner, T. Denk, C. C. Porco, and the Cassini ISS Team (2005), The cratering record of the Saturnian satellites Phoebe, Tethys,
Dione and Iapetus in comparison: First results from analysis of the Cassini ISS imaging data, Lunar and Planetary Institute Conference
Abstracts 36, Abstract 2034.

Persoon, A. M., D. A. Gurnett, J. S. Leisner, W. S. Kurth, J. B. Groene, and J. B. Faden (2013), The plasma density distribution in the inner region
of Saturn’s magnetosphere, J. Geophys. Res. Space Physics, 118, 2970–2974, doi:10.1002/jgra.50182.

Roussos, E. P., et al. (2012), Energetic electron observations of Rhea’s magnetospheric interaction, Icarus, 221, 116–134, doi:10.1016/
j.icarus.2012.07.006.

Santolík, O., D. A. Gurnett, G. H. Jones, P. Schippers, F. J. Crary, J. S. Leisner, G. B. Hospodarsky, W. S. Kurth, C. T. Russell, and M. K. Dougherty
(2011), Intense plasma wave emissions associated with Saturn’s moon Rhea, Geophys. Res. Lett., 38, L19204, doi:10.1029/2011GL049219.

Scipioni, F., F. Tosi, K. Stephan, G. Filacchione, M. Ciarniello, F. Capaccioni, P. Cerroni, and the VIMS team (2014), Spectroscopic classification of
icy satellites of Saturn II: Identification of terrain units on Rhea, Icarus, 234, 1–16, doi:10.1016/j.icarus.2014.02.010.

Simon, S., H. Kriegel, J. Saur, A. Wennmacher, F. M. Neubauer, E. Roussos, U. Motschmann, and M. K. Dougherty (2012), Analysis of Cassini
magnetic field observations over the poles of Rhea, J. Geophys. Res., 117, A07211, doi:10.1029/2012JA017747.

Smith, B. A., et al. (1981), Encounter with Saturn—Voyager 1 imaging science results, Science, 212, 163–191, doi:10.1126/science.212.4491.163.
Teolis, B. D., et al. (2010), Cassini finds and oxygen-carbon dioxide atmosphere at Saturn’s Icy Moon Rhea, Science, 330, 1813–1815,

doi:10.1126/science.1198366.
Teolis, B. D., I. Sillanpaa, J. H. Waite, and K. K. Khurana (2014), Surface current balance and thermoelectric whistler wings at airless

astrophysical bodies: Cassini at Rhea, J. Geophys. Res. Space Physics, 119, 8881–8901, doi:10.1002/2014JA020094.
Vasyliunas, V. M. (1970), Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the

Magnetosphere, edited by B. M. McCormac, pp. 60–71, D. Reidel, Dordrecht, Netherland.
Wagner, R. J., G. Neukum, B. Giese, T. Roatsch, and U. Wolf (2007), The global geology of Rhea: Preliminary implications from the Cassini ISS

data, Lunar and Planetary Institute Conference Abstracts 38, Abstract 1958.
Wagner, R. J., G. Neukum, B. Giese, T. Roatsch, T. Denk, U. Wolf, and C. C. Porco (2010), The geology of Rhea: A first look at the ISS camera data

from orbit 12 (Nov. 21, 2009) in Cassini’s extended mission, Lunar and Planetary Institute Conference Abstracts 41, Abstract 1672.
Wilson, R. J., R. L. Tokar, M. G. Henderson, T. W. Hill, M. F. Thomson, and D. H. Pontius (2008), Cassini plasma spectrometer thermal ion

measurements in Saturn’s inner magnetosphere, J. Geophys. Res., 113, A12218, doi:10.1029/2008JA013486.
Zahnle, K., P. Schenk, H. Levison, and L. Dones (2003), Cratering rates in the outer solar system, Icarus, 163, 263–289, doi:10.1016/S0019-

1035(03)00048-4.
Zhang, H., K. K. Khurana, M. G. Kivelson, V. Angelopoulos, W. X. Wan, L. B. Liu, Q.-G. Zong, Z. Y. Pu, Q. Q. Shi, and W. L. Liu (2014),

Three-dimensional lunar wake reconstructed from ARTEMIS data, J. Geophys. Res. Space Physics, 119, 5220–5243, doi:10.1002/
2014JA020111.

Journal of Geophysical Research: Space Physics 10.1002/2016JA023595

KHURANA ET AL. RHEA’S ALFVÉN WINGS 1788

Acknowledgments
Field and plasma data used in this work
were obtained from the Planetary
Plasma Interaction node of the
Planetary Data System. The data can be
accessed by following links on the web-
page: http://ppi.pds.nasa.gov/search/?
t=Saturn&sc=Cassini&facet=SPACECRA-
FT_NAME&depth=1. We would like to
thank Steve Kellock of Imperial College
and Louise Lee of IGPP/UCLA for
preparing the magnetic field data sets
used in this work. This work was
supported by the National Aeronautics
and Space Administration through Jet
Propulsion Laboratory under contract
1409806. S. F. acknowledges support
from NASA’s Cassini Data Analysis
Program (CDAP), grant NNX15AL20G.
This research was conducted using
resources provided by the Swedish
National Infrastructure for Computing
(SNIC) at the High Performance
Computing Center North (HPC2N),
Umea University, Sweden. The software
used in this work was in part developed
by the DOE NNSA-ASC OASCR Flash
Center at the University of Chicago.
Jesper Lindkvist’s work was supported
by the Swedish National Space Board
(SNSB) through grant 94/11.

http://doi.org/10.1029/2006GL028100
http://doi.org/10.1029/2011GL047415
http://doi.org/10.5047/eps.2011.06.040
http://doi.org/10.1029/2006JA012110
http://doi.org/10.1016/j.icarus.2007.08.005
http://doi.org/10.1016/j.icarus.2007.08.005
http://doi.org/10.1006/jcph.1994.1084
http://doi.org/10.1029/JA085iA03p01171
http://doi.org/10.1029/JA085iA03p01171
http://doi.org/10.1029/97JE03370
http://doi.org/10.1002/jgra.50182
http://doi.org/10.1016/j.icarus.2012.07.006
http://doi.org/10.1016/j.icarus.2012.07.006
http://doi.org/10.1029/2011GL049219
http://doi.org/10.1016/j.icarus.2014.02.010
http://doi.org/10.1029/2012JA017747
http://doi.org/10.1126/science.212.4491.163
http://doi.org/10.1126/science.1198366
http://doi.org/10.1002/2014JA020094
http://doi.org/10.1029/2008JA013486
http://doi.org/10.1016/S0019-1035(03)00048-4
http://doi.org/10.1016/S0019-1035(03)00048-4
http://doi.org/10.1002/2014JA020111
http://doi.org/10.1002/2014JA020111
http://ppi.pds.nasa.gov/search/?t=Saturn&sc=Cassini&facet=SPACECRAFT_NAME&depth=1
http://ppi.pds.nasa.gov/search/?t=Saturn&sc=Cassini&facet=SPACECRAFT_NAME&depth=1
http://ppi.pds.nasa.gov/search/?t=Saturn&sc=Cassini&facet=SPACECRAFT_NAME&depth=1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


