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Abstract. Examinations of the magnetohydrodynamic (MHD) equations across a bow shock are
presented. These equations are written in the familiar Rankine–Hugoniot set, and an exact solution
to this set is given which involves the upstream magnetosonic Mach number, plasma �, polytropic
index, and �B�v , as a function of position along the shock surface. The asymptotic Mach cone angle
of the shock surface is also given as a function of the upstream parameters, as a set of transcendental
equations. The standoff position of a detached bow shock from an obstacle is also reviewed. In
addition, a detailed examination of the hydrodynamic equations along the boundary of the obstacle is
performed. Lastly, the MHD relations along the obstacle surface are examined, for specific orientations
of the upstream interplanetary magnetic field (IMF) in relation to the upstream flow velocity vector.

1. Introduction

The physics of planetary bow shocks, the magnetosheath region, and obstacles
such as the magnetopause have been investigated with the use of hydrodynamic
and magnetohydrodynamic equations for several decades. For some circumstances,
analytic solutions can be found, while under other circumstances, only numerical
solutions have been determined. The purpose of this paper is to examine under what
conditions analytic solutions are available, where numerical solutions are used, and
where past misconceptions and misunderstandings have occurred.

The Rankine–Hugoniot relations for an isotropic plasma are used to examine
the change in physical parameters (density, velocity, temperature, and magnetic
field) across a planetary bow shock. As will be shown in the next section, these
can be determined analytically everywhere along the bow shock surface (assuming
the shock surface can be approximated as locally planar). Along the boundary
of a planetary obstacle, the hydrodynamic equations (and magnetohydrodynamic
equations, for a specific direction of the magnetic field) can also be solved analyt-
ically, so that the physical parameters can be known as a function of the solar wind
condition. However, there are several topics for which analytic solutions are not
available. The exact flow properties of plasma throughout the magnetosheath region
is not known analytically. While the particle mass flux, magnetic flux, and energy
must be conserved throughout the magnetosheath, this is not enough information
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to determine exactly where the bow shock is, or its exact shape. Even in a hydro-
dynamic situation with a rigid obstacle (e.g., a sphere), the bow shock position and
shape has never been solved analytically and exactly (not even at the shock standoff
position), though approximate solutions have been known for more than 40 years
(Laitone and Pardee, 1947; Nagamatsu, 1949; Kawamura, 1950; Hida, 1953; Van
Dyke and Gordon, 1959; Lomax and Inouye, 1964), and conjectures have been put
forth in order to satisfy expected conditions as the Mach number approaches unity
(Farris and Russell, 1994). Thus, with a magnetized plasma and a non-spherical
obstacle like the magnetopause, only numerical solutions have been developed. As
will be further discussed in a later section, the physics which controls the location
of the magnetopause is also difficult because its shape and position are determined
by means of pressure balance (in the absence of reconnection processes), and is
actually self-consistently determined with the bow shock position and shape.

2. Across the Bow Shock

2.1. RANKINE–HUGONIOT RELATIONS

2.1.1. R–H Equations at Shock Subsolar Position
As mentioned in the Introduction, the MHD equations for an ideal, adiabatic flow
(P / �) are solveable across the bow shock. These equations are best written in
the familiar form of the Rankine–Hugoniot relations. In addition, we assume here
that the shock front is locally planar, and the plasma upstream and downstream of
the bow shock is isotropic, such that the thermal pressure can be written as a scalar
quantity, with the same value of the polytropic index () along and perpendicular
to the magnetic field. The explicit Rankine–Hugoniot relations across the shock
are then written as follows:
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where square brackets denote the change in the quantity across the shock front,
� is the plasma mass density, v is the plasma bulk velocity relative to the shock,
P is the thermal pressure, and B is the magnetic field. The subscript n denotes
the parameter component normal to the shock front, while the subscript t denotes
the parameter component which is parallel to the shock front. These relations are
equivalent to those used by Zhuang and Russell (1981), though the notation has
been modified.

Our objective is to determine the plasma conditions and magnetic field across
the shock surface, given the upstream conditions. It should be noted that this is not
always the main objective of those who work with the Rankine–Hugoniot relations.
For example, Lepping and Argentiero (1971) had used the relations described
above to develop an iterative procedure (employing the Newton–Raphson method)
to solve for the normal direction and bulk speed of the bow shock (relative to an
in-situ spacecraft), given observations of the plasma conditions and magnetic field
on either side of the shock by instruments from a single spacecraft. This work was
later followed with a nonlinear least-squares fitting technique by Viñas and Scudder
(1986), and these techniques were more recently improved upon by Szabo (1994)
(which accounted for perturbations of the observations by plasma instabilities).

Below we rewrite Equations (7)–(13) of Zhuang and Russell (1981), which are
valid for arbitrary upstream velocity and magnetic field directions incident with the
shock surface. However, we use SI units here. In addition, the symbol 1 is used
for values in the solar wind.

� � �1vn1 = �vn ; (7)
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At this point we define X � �1=� = vn=vn1 which differs by the factor
(�vnvn1)�1 from the definition of Zhuang and Russell (1981). This allows us to
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rewrite the equations in terms of dimensionless variables such as Mach numbers
and trigonometric functions of angles. This procedure was first used by Cairns and
Grabbe (1994).

For the general problem of determining solutions of parameters everywhere
across the bow shock, we must assume that at every point along the shock surface,
a planar approximation can be made (i.e., the effect of shock surface curvature
on the Rankine–Hugoniot equations is not considered). This approximation is
expected to be valid because the ion gyroradius (�100 km) is more than three
orders of magnitude smaller than the smallest radius of curvature of the bow shock
(�25 Re, along the stagnation streamline (Farris and Russell, 1994)). We are
also using a frame of reference wherein the shock surface is time stationary. This
approximation must be kept in mind when comparing the solutions of the equations
above with actual crossings of the bow shock with spacecraft, as the velocity of
the shock front with respect to a crossing spacecraft cannot be zero. Treatment of
the Rankine–Hugoniot relations for a non-time stationary shock front have been
investigated by Hudson (1970), Lepping and Argentiero (1971), Viñas and Scudder
(1986), Szabo (1994), and others. In addition, if the shock constantly reforms under
certain conditions (e.g., when the upstream Mach number is high, and magnetic
field is nearly parallel to the shock normal and upstream waves are present), as
shown in many simulations (Burgess, 1989; Thomas et al., 1990; Winske et al.,
1990; Onsager et al., l991a, b; Scholer and Burgess, 1992; Scholer et al., 1993),
then the above equations are expected not to be valid. Lastly, we assume from the
equations above that the temperature of the plasma upstream and downstream of the
bow shock is isotropic. Observationally, the plasma is rarely isotropic; particularly
within the magnetosheath. The effect of temperature anisotropy has been included
in the MHD equations used by Hudson (1970). The magnitude of this effect on the
change in parameters across the bow shock is not known, however, and is a topic
for additional study.

Before continuing on to solve Equations (7)–(10), several angles must be
defined. The angle between the upstream magnetic field and velocity vectors is
denoted as �B�v . The angle between the upstream velocity vector and the shock
normal (in the frame of reference which is at rest with respect to the obstacle) is
defined as �v�n, while the angle between the upstream magnetic field vector and
the shock normal is defined as �B�n. Other angles of importance are the azimuthal
angle �B�v in the plane of the shock front, and �v�n in the plane perpendicular to
the upstream velocity vector. These angles are illustrated in Figure 1.

Using the trigonometric relations between vectors, definitions of sonic and
Alfvén Mach numbers and plasma beta (M 2

s � �1v
2
T1=P1, M2

A � �0�1v
2
T1=

B2
T1, and � = 2=(MA=Ms)

2, respectively, where the T -subscript represents
the total value), and the above definition for X , Equation (4) can be rewritten
(eliminating P using Equation (2), incorporating Equations (1), (3), (5), and (6),
and after considerable algebra) as the following quartic equation:
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Figure 1. Schematic of the geometry used in this study. (a) Alignment with the normal to the bow
shock surface. (b) Alignment with respect to the upstream solar wind velocity vector (shock surface
normal to n is not shown).

A0X
4 +B0X

3 + C0X
2 +D0X +E0 = 0 ; (11)

where

A0 = (1 + )M 6
A cos6 �v�n ;

B0 = �M4
A cos4 �v�n(2M2

A cos2 �v�n + (1 + �) + cos2 �B�n(2 + )) ;

C0 =M2
A cos2 �v�n(M

4
A cos4 �v�n(�1 + ) +M2

A cos2 �v�n(� + 2((1+)

� cos2 �B�n � (1 � ))) + cos2 �B�n(1 +  + 2�)) ;

D0 =M 2
A cos2 �v�n(M

2
A cos2 �v�n(2�  �  cos2 �B�n)

�2 cos2 �B�n(1 + �)) � � cos4 �B�n ;

E0 = cos2 �B�n(M
2
A cos2 �v�n(�1 + ) + � cos2 �B�n) :
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One solution of this equation is the trivial non-shock solution,X = 1. This solution
can be factored out of Equation (1), resulting in the following cubic equation:

A1X
3 +B1X

2 + C1X +D1 = 0 ; (12)

where

A1 = (1 + )M 6
A cos6 �v�n ;

B1 =M4
A cos4 �v�n((1� )M2

A cos2 �v�n � ( + 2) cos2 �B�n � (1 + �));

C1 =M2
A cos2 �v�n((�2 +  +  cos2 �B�n)M

2
A cos2 �v�n

+(1 +  + 2�) cos2 �B�n) ;

D1 = cos2 �B�n((1 � )M2
A cos2 �v�n � � cos2 �B�n) :

When �v�n = 0�, this set of equations reduces to those used by Cairns and Grabbe
(1994) (which are a rewritten formulation of the set of equations derived by Zhuang
and Russell (1981)). However, the set of equations above is more general and can
be applied to the entire bow shock, rather than simply at the subsolar position.
Away from the subsolar point the flow is not along the shock normal, though at
any given point along the shock surface, one can make a frame transformation such
that the upstream velocity is normal to the shock surface, and the local value of
�v�n would be zero. This frame transformation is equivalent to a normal incidence
frame (NIF) of reference, and will be discussed later in this review.

From the set of equations derived by Zhuang and Russell (1981), first-order
analytic solutions to the Rankine–Hugoniot relations across the bow shock had
been determined. However, though the coefficients of this cubic equation are quite
complicated, the roots of this equation can, in fact, be exactly determined (contrary
to the assertions of Grabbe and Cairns (1995)). The real root is most conveniently
expressed as a set of nested functions, and is given below:

X = �
t1

t9c�2
�

21=3t3

M2
2 t8t9c

3
�2

+
t8

21=3M2
2 t9c

3
�2
; (13)

where

c�2 = (cos�v�n cos �B�v + sin�v�n sin �B�v cos�v�n)
2

f= cos2 �B�ng ;

c�2 = cos2 �v�n ;

c2 = cos2 �B�v f= (cos�v�n cos �B�n + sin�v�n sin �B�n cos�B�v)
2
g ;

M2 =M2
ms(1 + �=2 + ((1 + �=2)2

� 2�c2)
1=2)=2 f=M2

Ag ;
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t1 = �(1 + �) +M2c�2(1� )� c�2(2 + ) ;

t2 =M2c�2(�2 + ) + c�2(1 + (1 + 2� +M2c�2)) ;
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2 c
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6
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t7 = (4t33 + t26)
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1=3 ;
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where Mms is the upstream magnetosonic Mach number M 2
ms � 2=(1=M 2

A +
1=M 2

s + ((1=M2
A + 1=M2

s )
2 � 4 cos2 �B�v=(M

2
AM

2
s ))

1=2) = 2M2
A=(1 + �=2 +

((1 + �=2)2 � 2� cos2 �B�v)
1=2) = �M2

s =(1 + �=2 + ((1 + �=2)2 �

2� cos2 �B�v)
1=2)): It should be noted that this definition is in the frame of

reference wherein the obstacle is at rest. In the case of the Earth, however, there
is a velocity of approximately 30 km s�1 perpendicular to the solar wind plasma
velocity due to the motion of the Earth about the Sun which must be accounted
for, and will change the angle �B�v by approximately 4�. Equivalent trigonometric
expressions are shown in the curly brackets. In order to reduce the number of angles
needed, the upstream magnetic field is defined to lie in the x� z plane, in the same
manner as Zhuang and Russell (1981). The above set of equations reduces to the
set derived in Russell and Petrinec (1996) for flow through the shock subsolar point
(�v�n = 0�). Thus, the ratio of downstream to upstream parameters at any position
along the bow shock surface f�v�n; �v�ng can be determined from the solar wind
inputs Mms, �, �B�v , and .

� = �1=X ; (14)

BT = BT1

q
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PT = PT1

2M2
�

�1

�
vT

vT1

�2

+ �
P

P1
+

�
BT

BT1

�2

2M2 + � + 1
; (18)

where

a =
c�2 �M2c�2

c�2 �XM2c�2
(19)

and

c� = cos�v�n cos �B�v + sin�v�n sin �B�v cos�v�n = cos �B�n

= �(c�2)
1=2 ; (20)

PT is the summation of the dynamic, thermal, and magnetic pressures. Although
the solution provided by Equation (13) for the density ratio (X) across the shock is
complete, there can occur a singular point where values of the parameters given by
Equations (14)–(18) are not physically correct. When �B�v = 0�, this occurs when
the plasma � < 2=, and 1 < M2(=M2

A) < (1+ (1��))=( � 1). Under these
conditions we encounter the ‘switch-on’ shock solution at the subsolar position;
i.e., the velocity and magnetic field downstream of the bow shock subsolar position
acquire non-zero components parallel to the shock surface (though they remain
parallel to one another downstream). When  = 5

3 in the limit that � approaches
zero, the ‘switch-on’ shock solution applies at the subsolar point for 1< Mms < 2.
As � increases the range of Mach numbers for which the ‘switch-on’ shock solution
occurs shrinks and for � greater than 1.2 there is no ‘switch-on’ shock solution.
The solution of Equation (13) above is then the ‘switch-on’ shock solution under
these conditions, as it can be reduced to X = 1=M2 = 1=M2

A across the subsolar
shock. Thus, the density ratio and velocity ratio normal to the shock surface are
correctly given by Equation (14). However, it is clearly seen that at the subsolar
point the downstream total magnetic field given by Equation (15) is incorrect
(c�2 = 1). A singular point is observed in the components of the magnetic field
parallel to the shock surface at the subsolar position, in comparison to positions
along the shock surface infinitesimally close to the subsolar position. The ‘switch-
on’ shock solution has been examined in detail by Kennel and Edmiston (1988) at
the subsolar position. They found that for the ‘switch-on’ shock, the downstream
speed is the intermediate shock speed. The magnitude of the tangential component
of the magnetic field was shown to be determined in terms of upstream sonic and
Alfvén speeds. Their solution is rewritten here in the format used above:

Bt = BT1[(M2 � 1)(1 + (1� �)�M2( � 1))]1=2
� BT1b

0 : (21)

From this relation and Equation (13), we can proceed to determine the total mag-
netic field, thermal pressure, total velocity, and total pressure. Before this is done,
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however, it should be noted that this formulation was designed for use at the sub-
solar position (where �B�v = 0�). However, it is important to note that even when
�B�v 6= 0� but plasma � and the upstream magnetosonic Mach number are small
enough, there is still a position on the shock surface where the upstream magnetic
field is perfectly normal to the bow shock surface (provided �B�v < 90� � !; !
is the asymptotic Mach cone angle). A singular point appears at this position, and
the ‘switch-on’ shock solution then applies. This is because, although the upstream
velocity vector is not aligned with the upstream magnetic field vector, a simple
change in the frame of reference will cause the two vectors to align, by eliminating
the upstream velocity component which is parallel to the shock surface (this is the
normal incidence frame (NIF) of reference). Note that this is not a global change
in the frame of reference; since the parallel and perpendicular components of the
solar wind velocity change along the shock surface, the NIF must be determined
at each point along the shock surface. Then the specific criteria for the ‘switch-on’
solution are that � < 2= and M2 < (1 + (1 � �))=(c2( � 1)). Since in this
study we have confined the IMF to the x � z plane, then �v�n = 0� and under
these conditions, the magnetic field components at this singular point (only) can
be written as:

Bn = BT1 cos �B�n ;

Bt1 = 0 ; (22)

Bt2 = BT1(b0 cos �B�n + sin �B�n) ;

where the subscripts t1 and t2 are the tangential components of t along the shock
surface in the x� y plane and x� z plane, respectively (and is not to be confused
with the terms t1 and t2 used in the solution of Equation (13)). The total magnetic
field is

BT = BT1[1 + b02c�2 + 2b0c�
q
(1 � c�2)]

1=2 ; (23)

where b0 is now generalized as

b0 = [(M2c�2 � 1)(1 + (1� �)�M2c�2( � 1))]1=2 : (24)

The thermal pressure for the downstream side at the singular position is then
determined as

P = P1

�
1 + (1�X)

2M2

�
c�2 �

b0

�
c�(b

0c� + 2
p

1� c�2)

�
(25)

and the total velocity is

v2
T = v2

T1

 
1 + (X2

� 1)c�2 +
b02c2

�2

M2
2 c�2

+
2b0c�2

M2

s
1� c�2

c�2

!
: (26)
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2.1.2. Sample Contour Plots
Along the entire shock surface comparisons of mass density and thermal pres-
sure contours using the exact solution agree excellently (differences of less than
1%) with the contour plots of Zhuang and Russell (1981). Sample figures of the
downstream to upstream ratios of mass density, thermal pressure, total velocity,
total magnetic field, and total pressure across the shock surface are displayed in
Figures 2–4. In these figures, the view is from the Sun, and the plots are of the
polar angle �v�n (radial distance from the center of the plot) and azimuthal angle
�v�n. Coordinates are chosen so that the positive x-axis is directed outward, the
positive x-axis points towards the top of the page (�v�n = 0�), and the positive
y-axis is directed to the right. The center of each plot represents the subsolar posi-
tion. Figures 2–4 illustrate parameter ratios (calculated from Equations (14)–(18))
across the shock, for given fixed values of the upstream magnetosonic Mach num-
ber (Mms = 5), plasma beta (� = 1:2), and polytropic index ( = 5

3 ). The angle
between the IMF and upstream velocity vector (�B�v) is 0� or 180� (Figure 2),
90� (Figure 3), and 45� (Figure 4), respectively. The angle �B�v is ideally constant
throughout the upstream region, and has been chosen as the independent variable
for Figures 2–4. We have chosen the set fMms; �; �B�v ; g to describe the solar
wind, instead of the equivalent set fMs;MA; �B�v ; g. The equivalent upstream
Alfvénic and sonic Mach numbers in Figure 2 are MA = Ms = 5; in Figure 3,
MA = Ms = 7:071; in Figure 4, MA = Ms = 6:956. The angle �B�v lies within
the x� z plane, and contour levels have been chosen to lie at 20� intervals along
the z-axis (with the exception of Figure 4, where this was not always possible). In
Figure 2, the contours are circularly symmetric, as expected. In the first panel, we
find that the plasma mass density ratio across the bow shock increases by nearly
a factor of 4 at the subsolar point, but does not change markedly with �v�n until
this angle becomes larger than about 45�. In the second panel, the thermal pressure
change is quite large at the subsolar position, and decreases as �v�n increases. The
total velocity at the subsolar point drops by nearly a factor of 4 across the bow
shock, but steadily increases to match the solar wind speed. (The unity contour
corresponds to the asymptotic Mach cone angle. This will be discussed in more
detail below.) Although not shown, it should be noted that the change in velocity
across the shock for the situation displayed in Figure 2 is such that the direction
of the downstream velocity is deflected away from the shock normal (except at
the subsolar position). The total magnetic field ratio is unity at the subsolar pos-
ition (as it must be), but is larger at distances further from the subsolar position.
However, this ratio approaches unity again far from the subsolar position. The final
panel in Figure 2 displays the ratio of total pressures across the bow shock. This
is not to be confused with the ratio of the pressure component normal to the bow
shock, which is unity along the entire surface (as evidenced from the addition of
Equations (2) and (6)). Its behavior for �B�v = 0� (or 180�) is similar to that of
the total magnetic field. In Figure 3, the contour values of the density and velocity
ratios are similar to those in Figure 2. However, the contours are elongated in the
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direction of the upstream magnetic field. The thermal pressure ratio is larger than
the corresponding ratio in Figure 2, and the contours are also slightly elongated in
the direction of the solar wind magnetic field vector. The total magnetic field ratio
is considerably different from that of Figure 2, decreasing steadily with increasing
distance from the subsolar position. The contours are also elongated, but in the
direction perpendicular to the plane containing the upstream velocity and magnetic
field vectors. The density ratio, the magnetic field ratio, and the inverse velocity
ratio are equivalent at the subsolar point, as expected (though this is in contrast
to the ideal MHD simulation results of Cairns and Lyon (1995), which shows that
�=�1 < vT1=vT < BT =BT1 on the downstream side of the subsolar bow shock
for upstream �B�v = 90�). The total pressure ratio displayed in the final panel
indicates that the pressure is slightly higher along the axis containing the solar
wind magnetic field than along the axis perpendicular to the upstream magnetic
field.

In Figure 4, we display the same parameter ratios for �B�v = 45� and
�B�v = 0� (or �B�v = 135� and �B�v = 180�). The density contours are pulled
towards the positive z-axis, with a maximum ratio at �v�n = 24� and �v�n = 0�.
The maximum thermal pressure ratio, the minimum total velocity ratio, and the
minimum total pressure ratio are likewise pulled towards the positive z-axis by
5.9�, 2.4�, and 2.5�, respectively. It is noted here (though not often appreciated)
that the downstream bulk plasma velocity at the subsolar shock position is deflec-
ted from the upstream velocity direction when the upstream velocity and IMF are
neither aligned with nor perpendicular to one another (the effect of the deflection of
the downstream velocity caused by the IMF direction on the shape and orientation
of the shock and magnetopause were investigated by Walters (1964) and Zhuang
et al. (1981)). Of these parameters, it is expected that the total pressure ratio across
the bow shock would best indicate a deflection of the symmetry axis of the bow
shock due to the IMF. Thus, it appears that for �B�v = 45�, Mms = 5, � = 1:2,
and  = 5

3 , there is a deflection of 2.5�. However, this angular value is meaning-
less until we relate �v�n to the shape of the bow shock (this is done below). In
addition, this non-zero value of the angular deflection of the bow shock symmetry
axis may only apply to a solid obstacle. For an obstacle such as the magnetopause,
for which the shape and size is determined by the conditions of the solar wind, it is
not known whether any deflection of the shock symmetry axis actually occurs (see
Zhuang et al. (1981) for a comprehensive study of pressure asymmetries along the
magnetopause and consequent deflection of the magnetopause symmetry axis).

The shape of the shock surface is determined by the shape of the obstacle,
as noted in many earlier studies (Van Dyke and Gordon, 1959; Kellogg, 1962;
Spreiter and Jones, 1963; Lomax and Inouye, 1964; Spreiter et al., 1966; Zhuang
and Russell, 1981; Farris and Russell, 1994; and others). Some empirical studies
fit spacecraft crossings of the bow shock to a general 2nd-order conic section in
3-dimensions (Formisano, 1979; Peredo et al., 1995). Fits to conic sections in 2-
dimensions were performed by Fairfield (1971), who then went on to estimate a
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Figure 2. Contour levels representing the solutions of the Rankine–Hugoniot conditions over the
shock surface, for upstream field-aligned flow. The view is from the Sun, so the upstream velocity
vector is directed into the page. The magnetosonic Mach number is 5, the plasma � is 1.2, and the
polytropic index is 5

3 . The panels include the downstream-to-upstream mass density ratio, thermal
pressure, total velocity, total magnetic field, and total pressure. The axes are displayed in the upper
left corner, but the plots are not in spatial coordinates. The radial distance represents �v�n, and the
azimuthal angle is �v�n (0� along the positive z-axis).
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Figure 3. Same as Figure 2, but for an upstream magnetic field along the z-axis, and perpendicular
to the upstream velocity vector.
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Figure 4. Same as Figure 2, but for an angle between the upstream magnetic field and upstream
velocity vector of 45�.
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simpler 2-parameter fit (the eccentricity and the subsolar distance), with the origin
placed at one focus. The placement of the origin with respect to the center of the
Earth can be treated as a free variable. However, Fairfield (and more recently, Farris
et al., 1991) had fixed the origin at the center of the Earth, in order to better study
the effects of the solar wind on the shock subsolar distance and average shape. The
equation for the conic section can thus be written as:

r =
r0(1 + ")

1 + " cos s
; (27)

where r is the radial distance from the Earth, r0 is the distance from the Earth to the
subsolar position, " is the eccentricity of the bow shock, and s is the angle between
the solar wind vector and the normal to the bow shock surface. The relationship
between �v�n and  s can then easily be solved as

cos2 �v�n = c�2 =
(cos s + ")2

"(2 cos s + ") + 1
; (28)

or, equivalently,

cos s = "(c�2 � 1) +
q
c�2("2(c�2 � 1) + 1) : (29)

Using an eccentricity of 0.81 as determined empirically by Farris et al. (1991), the
minimum total pressure of Figure 4 can be estimated to be at  s = 4:5� towards
the positive z-axis.

Lastly, an interesting feature (and an important one for observers) is found in
the velocity contour panel of Figure 4. Here, the total velocity ratio exceeds unity
close to the asymptotic Mach contour (by at most 1.5% for these parameters). Yet
the total pressure perpendicular to the surface and the total energy across the bow
shock in this region are conserved. In addition, the angle of the magnetosheath
velocity vector with respect to the normal is larger than the corresponding angle
in the solar wind. The total magnetosheath velocity is larger than the total solar
wind velocity as a consequence of the frame of reference. When viewed from the
NIF of reference, the total magnetosheath velocity is less than the total solar wind
velocity in the same region, with the ratio becoming equal to unity at the asymptotic
Mach cone angle. In addition, the downstream magnetosonic Mach number is less
than unity in this region. Thus, it should be possible for a spacecraft to observe
a slight increase in the total velocity as it crosses from the solar wind into the
magnetosheath region in a geocentric frame of reference (though this would occur
very far downtail).

2.2. ASYMPTOTIC MACH CONE ANGLE

The outermost contour in all of the panels of Figures 2–4 is unity, corresponding
to the asymptotic Mach cone angle. This is the inclination angle that the very
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distant shock makes with respect to the upstream velocity vector. It is interesting
to note that while the upstream magnetosonic Mach number is (ideally) a constant
value for given solar wind parameters and magnetic field direction (in the frame of
reference which is stationary with respect to an obstacle in the flow), the fast mode
phase speed of the plasma is not spherically symmetric (as is the sound speed for an
ideal gas); thus the shock wave propagates at different speeds depending upon the
local orientation of the shock surface with respect to the upstream magnetic field
direction. The asymptotic Mach cone angle is not a constant value, but varies with
the IMF direction. In Figures 2–4 the Mach cone angle varies from ! = 16:26�

(�v�n = 73:74�, the complement of !) for �B�v = 0�, to ! = 8:73� (�v�n =
81:27�) for �B�v = 90� (in the x � z plane), while the upstream value of Mms

remains constant in these figures (Mms = 5). To determine the asymptotic Mach
cone angle, the appropriate expression is ! = arc sin(vph=vT1) (or, equivalently,
cos�v�n = vph=vT1), where

vph

vT1
=

vuuut 1
2M2

0
@1 +

�

2
+

s�
1 +

�

2

�2

� 2� cos2 �B�k

1
A : (30)

The angle �B�k differs from the upstream angle �B�v , as illustrated in Figure 5
(since the bow shock is a fast magnetosonic wave, its surface is determined from
�B�k). In two dimensions, the angle �B�k = �v�n� �B�v (the sign is determined
by the relative rotations (clockwise or counterclockwise) of�B�k and �B�v from the
upstream velocity vector). As noted by Spreiter and Stahara (1985), the asymptotic
Mach cone angle (!) of the bow shock in the general MHD situation can only be
given explicitly for special cases of �B�v (0� or 180�, 90�, and values which result
in the maximum or minimum asymptotic angle), or when there is no upstream
magnetic field. In the plane containing the solar wind velocity and magnetic field
vectors, the general relation for the asymptotic angle �v�n is:

2
p
M2 cos�v�n =

r
2 + � +

q
(2 + �)2 � 8� cos2(�v�n � �B�v) ;

(31)

where the negative sign is chosen when �v�n = 0� (positive z-axis), and the
positive sign is chosen when �v�n = 180� (negative z-axis). This equation is
transcendental, so the asymptotic angle can only be found numerically. With this
equation, we find that in Figure 4, the asymptotic angle�v�n is 79.0� (! = 11:0�)
along the positive z-axis, and �v�n is 78.0� (! = 12:0�) along the negative z-axis.
This suggests that the symmetry axis of the bow shock is deflected towards the
positive z-axis for the conditions in Figure 4, though by only 0.5�.

The above solution for the asymptotic Mach cone angle is not complete,
however, because we have only examined the x � z plane. The 3-dimensional
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Figure 5. The geometry used to determine the asymptotic Mach cone angle (!). The dotted line
demarks the intersection of a velocity sphere with a Friedrichs diagram. Here, v1 = 400 km s�1,
Mms = 5, � = 1:2, �B�v = 30�, and  = 5

3 . �v�n is the complement of the Mach cone angle, and
�v�n is the azimuthal angle in the y � z plane (�v�n = 0� along the z-axis).

problem is more complicated, and is illustrated in Figure 5 (which has been adap-
ted from similar figures in Spreiter et al. (1966) and Spreiter and Stahara (1985)).
The asymptotic Mach cone angle can be determined from the intersection in velo-
city space of a sphere of radius vT1=2 with the usual Friedrichs diagram, which
is displaced from the center of the velocity sphere by vT1=2, and rotated by the
angle �B�v . Figure 5 is actually calculated from parameters similar to those used
in Figures 2–4, except that we have used �B�v = 30�. We have also included
the intermediate and slow shock solutions in the Friedrichs diagram as a visual
aid, though they do not contribute to the solution we seek. The basic strategy is
to find where the velocity sphere intersects the 3-dimensional Friedrichs diagram.
For given values of �B�v and �v�n this is most easily accomplished by solving
numerically the following set of transcendental equations (simply by equating the
vx, vy , and vz components of the two surfaces), for �B�k, �B�k , and �v�n.
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cos(2�v�n) + 1 = 2
vph

vT1
(cos �B�k cosB�v � sin �B�k sin �B�v cos�B�k)

� sin(2�v�n) sin�v�n = 2
vph

vT1
sin �B�k sin�B�k ; (32)

sin(2�v�n) cos�v�n = 2
vph

vT1
(cos �B�k sin �B�v

+ sin �B�k cos �B�v cos�B�k) ;

where vph=vT1 is given by Equation (30).
In Figure 3, we find that in the x � z plane the Mach cone angle ! = 8:73�,

while in the y � z plane, it is 11.54�. This is true regardless of the obstacle shape
(or even if the bow shock is attached or detached from the obstacle). It can be
seen that as the upstream magnetosonic Mach number decreases towards unity, the
Mach cone angle ! approaches 90� (�v�n approaches 0�), and the shock surface
becomes planar. However, this does not tell us where the shock position is with
respect to the obstacle. This topic is further addressed below.

2.3. THE STANDOFF DISTANCE OF THE BOW SHOCK

The standoff distance of a detached bow shock from a blunt obstacle has been
of interest from the earliest studies of supersonic, aerodynamic flow (Laitone and
Pardee, 1947; Nagamatsu, 1949; Kawamura, 1950; Hida, 1953; and many others).
The position and shape of the bow shock is such as to allow all of the shocked
fluid to be deflected and flow between the shock and the obstacle. However, the
determination of the position and shape of the shock is extremely difficult to derive
from the hydrodynamic or gasdynamic relations, because these relations contain
no length scales. Instead, approximations and assumptions are used for the shock
curvature, the form of the stream functions, the vorticity and pressure distribution in
the downstream region. These parameters can also be determined from experiment,
observations, or via computer simulations (the earliest studies by Van Dyke and
Gordon, 1959; Lomax and Inouye, 1964; and others), which track the flow field
everywhere, and iterate to a final solution, subject to physical constraints.

It was noted early on that at high Mach numbers, the sheath thickness along the
stagnation streamline divided by the obstacle radius is proportional to the density
ratio across the shock (Hayes, 1955). A study of experimental results and previous
theories led Seiff (1962) to derive a constant of proportionality for this relation
(�=r0 = 0:78�1=�). However, it was noted that scatter at low density ratios
(low upstream Mach numbers) indicated that this relation may not hold under all
conditions.

A Rankine–Hugoniot relation between the density ratio and upstream sonic
Mach number was later used by Spreiter et al. (1966) to rewrite the relation of Seiff
(1962) in terms of the upstream sonic Mach number (here written asMs1). Results
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of wind tunnel experiments using a rigid ellipsoidal object with the approximate
shape of the magnetopause also compelled Spreiter et al. to replace the coefficient
0.78 with 1.1 in the Seiff relation, resulting in the following equation:

DBS

DOB
= 1 + 1:1

�1

�
= 1 + 1:1

( � 1)M2
s1 + 2

( + 1)M2
s1

; (33)

whereDOB is the distance from the focus of the ellipsoid to its nose, andDBS is the
distance from the ellipsoid focus to the shock subsolar position (it should also be
noted that the average radius of curvature of the subsolar obstacle is the physically
important parameter in the placement of the bow shock (see Farris and Russell,
1994, for explicit relations between the radius of curvature, obstacle eccentricity,
and obstacle standoff distance). Spreiter et al. cautioned that Equation (33) should
only be used for upstream sonic Mach numbers greater than 5. An extrapolation
to low Mach numbers reveals that the ratio of shock to obstacle standoff distances
becomes 2.1 at Ms1 = 1. There is no physical basis for this value, and is contrary
to expectations that the shock should retreat infinitely far from the obstacle as the
Mach number approaches unity (Landau and Lifshitz, 1959).

A later study by Farris and Russell (1994) approached the shortcomings of
the Spreiter et al. relation from a different perspective. They noted that a simple
relation involving the downstream sonic Mach number (M 2

s =(1 �M2
s )) resulted

in the same asymptotic value as the density ratio across the shock at high upstream
sonic Mach numbers. This relation also causes the ratio of bow shock to obstacle
standoff distances to retreat to infinity as the Mach number decreases towards unity:

DBS

DOB
= 1 + 1:1

( � 1)M2
s1 + 2

( + 1)(M2
s1 � 1)

= 1 + 1:1
2�1=�

(1 + )(1 � �1=�)
: (34)

This conjecture is very concise and attractive, though it has not yet been proven, and
is probably not exact. The density ratio can then be determined from the solution
of Equation (13) (for the subsolar shock position), in terms of plasma �, �B�v
(= �B�n at the subsolar position), and the magnetosonic Mach number. This has
been done by Russell and Petrinec (1996).

Cairns and Grabbe (1994) sought to show that the upstream magnetic field
can influence the position of the shock subsolar point from the obstacle standoff
position, in terms of Alfvén and sonic Mach numbers, as well as �B�v (= �B�n at
the subsolar position). However, the largest change in the shock standoff distance
from the obstacle (a factor of 4) at low Alfvén Mach numbers was found to occur
between �B�v = 0� and other angles. The problem in their treatment of the cubic
equation at the subsolar position was that specific values of �B�v were inserted
into the cubic equation before solving it. At �B�v = 0�, there are then 3 real
roots, as this procedure decouples the 2 equivalent ‘switch-on’ shock solutions
from the third solution. Only the third solution was used in Cairns and Grabbe
(1994), which lead to an incorrect estimate of the shock distance from the obstacle
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Figure 6. The ratio of distances of the bow shock and magnetopause for various values of �B�n and
�, as a function of magnetosonic Mach number, using the Farris and Russell (1994) conjecture. The
‘switch-on’ shock solution and the �B�n = 0� solution are parts of the same solution as determined
from Equation (15). Adapted from Russell and Petrinec (1996).

at low Alfvén Mach numbers. This can easily be checked by noting that the density
ratio does not approach unity (as it should) as the Mach number approaches unity,
for �B�v = 0�. In addition, extrapolation of the Spreiter et al. solution towards
Mach numbers of unity was used by Cairns and Grabbe (1994), despite the known
problems. In contrast, the single solution of Russell and Petrinec (1996) (and,
more generally, Equation (13) above) was solved for arbitrary �B�v and couples
the ‘switch-on’ shock solution to the third real solution when �B�v = 0� in the
appropriate regions. Thus, this is the physical solution everywhere for the density
ratio. Russell and Petrinec then used the conjecture of Farris and Russell (1994) to
determine the shock subsolar position (Figure 6). Thus although it is true that the
upstream magnetic field can influence the shock subsolar position, the differences
are not as large as had been claimed for low Alfvén Mach numbers by Cairns and
Grabbe.
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However, as has been noted by Grabbe and Cairns (1995), there are several
contradictory studies regarding the change in distance between the bow shock and
obstacle standoff distances as a function of Alfvén Mach number. Computation-
al solutions by Spreiter and Rizzi (1974) found that the standoff distance ratio
between the bow shock and obstacle actually decreases with decreasing Alfvén
Mach number (in their study, �B�v = 0�, and the lowest upstream Alfvén Mach
number examined was MA = 2:5; thus they did not examine the behavior of the
bow shock in the regime where the ‘switch-on’ shock solution applies). Recently,
this claim has received observational support from the empirical study of Peredo
et al. (1995). In that study, bow shock crossings obtained from (17) spacecraft were
combined into a single data set, and bivariate fits performed. This result, however, is
in contrast to the computational study of Cairns and Lyon (1995) (for �B�v = 45�

and 90�), as well as the theoretical studies of Cairns and Grabbe (1994), Grabbe
and Cairns (1995), Farris and Russell (1994), and Russell and Petrinec (1996) (the
latter two using magnetosonic Mach number). Part of this discrepancy may depend
upon the obstacle; whether it is rigid or self-consistently solved in terms of pressure
balance. Whatever the reason, continued research into this question is needed.

3. Pressure Balance Along the Magnetopause

3.1. CASE 1: NO UPSTREAM MAGNETIC FIELD

The magnetopause can be described simply as a boundary at which the pressure of
the magnetosheath (which is related to the pressure of the solar wind) is balanced
by the pressure produced by the Earth’s intrinsic magnetic field (and a very small
contribution from the thermal pressure of the plasma interior to the magnetosphere).
One important point to consider is that in equilibrium, total pressure (the summation
of dynamic, thermal, and magnetic pressures) is balanced across the subsolar bow
shock, and total pressure is balanced across the magnetopause. However, along the
stagnation streamline the total pressure at the magnetopause is not equal to the
total pressure just downstream of the bow shock. The reason for this is that the
flow characteristics change within the magnetosheath so as to satisfy the MHD
relations (in particular, Bernoulli’s Equation), and deflect the plasma flow around
the obstacle.

It is of interest to examine the parameters of plasma flow along the outer surface
of the magnetopause, in terms of the solar wind parameters. In general, analytic
formulations of the plasma flow parameters in the magnetosheath region are not
known. However, the stagnation streamline lies closest to the magnetopause, and
much can be understood from consideration of this single streamline.

We begin this examination by first considering a simple hydrodynamic flow, so
that no external magnetic field exists. Then the Rankine–Hugoniot relations across
the bow shock at the subsolar point can be simply written as
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P = P1

�
1 +

2
 + 1

(M 2
s1 � 1)

�
; (35)

M 2
s =

1 +M2
s1( � 1)=2

M2
s1 � ( � 1)=2

; (36)

� = �1
( + 1)M2

s1

( � 1)M 2
s1 + 2

; (37)

vT = vT1

 
( � 1)M 2

s1 + 2
( + 1)M2

s1

!
; (38)

where Ms1 is the solar wind sonic Mach number, and Ms is the Mach number
on the downstream side of the bow shock (cf., Landau and Lifshitz, 1959). Using
Bernouilli’s equation ((v2

T =2) + (=( � 1))(P=�) = const:1) and the condition
of adiabatic flow (P�� = const:2) between the downstream side of the bow
shock and the obstacle stagnation position, the stagnation thermal pressure can be
determined as

Pst = P

�
1 +

 � 1
2

M 2
s

�=(�1)

: (39)

By substituting Equation (35) into Equation (39), and using the Mach number
relation defined by Equation (36), we arrive at the following relation between the
stagnation thermal pressure and the solar wind thermal pressure:

Pst = P1

 
( + 1)+1(M2

s1=2)

2M2
s1 � ( � 1)

!1=(�1)

; (40)

or, using the definition of the upstream sonic Mach number,

Pst = �1v
2
T1

1
M2

s1

 
( + 1)+1(M2

s1=2)

2M2
s1 � ( � 1)

!1=(�1)

= k�1v
2
T1 (41)

(cf., Landau and Lifshitz, 1959; Spreiter et al., 1966; Zhang et al., 1991). The value
of k approaches 0.881 as the upstream sonic Mach number approaches infinity, for
a polytropic index () of 5

3 .
The thermal pressure along the obstacle surface is then determined with the

Newtonian approximation:

P jOB = k�1v
2
T1 cos2  +Q = Pst cos2  +Q ; (42)

where the symbol Q is used to indicate the uncertainty involving the Newtonian
approximation. The density along the surface is determined with the use of the
adiabatic condition:
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Table I
Explicit expressions for the thermal pressure, mass density,
and total velocity along the obstacle surface, for  = 5

3 and
P jOB = Pst cos2  

Parameter Pressure relation! P jOB = Pst cos2  

P jOB = P1
44

35=2

M 5
s1

(5M 2
s1 � 1)3=2

cos2
 

� jOB = �1
44

33=2

M 5
s1

(M 2
s1 + 3)(5M 2

s1 � 1)3=2
cos6=5

 

v jOB = vT1

r
(M 2

s1 + 3)
M 2
s1

(1� cos4=5  )

Table II
Same as Table I, except P jOB = Pst cos2  + P1

Parameter Pressure relation! P jOB = Pst cos2  + P1

P jOB = P1

�
44

35=2

M 5
s1

(5M 2
s1 � 1)3=2

cos2
 + 1

�

� jOB = �1
48=5M 2

s1

(M 2
s1 + 3)(5M 2

s1 � 1)3=2

�
44

35=2
M

5
s1 cos2

 + (5M 2
s1 � 1)3=2

�3=5

v jOB = vT1

vuut (M 2
s1 + 3)
M 2
s1

 
1�

�
cos2  +

35=2

44

(5M 2
s1 � 1)3=2

M 5
s1

�2=5
!

� jOB = �

�
P jOB

P

�1=

(43)

and Bernoulli’s equation can be utilized to determine the velocity along the surface:

v2
 jOB = v2

T

0
@1 +

2
( � 1)M2

s

2
41�

 
P

P jOB

!(1�)=
3
5
1
A : (44)

In Equations (42)–(44),  defines the angle between the upstream flow velocity
vector and the normal to the obstacle. Below, we investigate this problem more
closely, using different functions in place ofQ. Tables I–III give simplified but expli-
cit expressions for the thermal pressure, density, and velocity along the boundary
with  = 5

3 , for the pressure balance relations given below.

3.1.1. P jOB = Pst cos2  = k�1v
2
T1 cos2  ; Q = 0

This formulation provides a simple and useful approximation for the pressure bal-
ance at the dayside magnetopause, for high Mach numbers. P jOB is the thermal
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Table III
Same as Table I, except P jOB = Pst cos2  + P1 sin2  

Parameter Pressure relation! P jOB = Pst cos2  + P1 sin2  

P jOB = P1

�
44

35=2

M 5
s1

(5M 2
s1 � 1)3=2

cos2
 + sin2

 

�

� jOB = �1
48=5M 2

s1

(M 2
s1 + 3)(5M 2

s1 � 1)3=2

�
44

35=2
M

5
s1 cos2

 + (5M 2
s1 � 1)3=2 sin2

 

�3=5

v jOB = vT1

vuut (M 2
s1 + 3)
M 2
s1

 
1�

�
cos2  +

35=2

44

(5M 2
s1 � 1)3=2

M 5
s1

sin2  

�2=5
!

pressure along the outer surface of the boundary which, for a surface like the mag-
netopause which is defined by pressure balance, is equivalent to the summation
of pressures interior to the magnetosphere (often stated as B2

msphere=2�0). This
relation has been used by numerous authors, using various values for k (Spitzer
(1956), Dungey (1958), Zhigulev and Romishevskii (1960), Beard (1960), Hurley
(1961), Mead and Beard (1964), Mead (1966), Olson (1969), and Parks (1991)
used a value of k = 2, while Ferraro (1952), Piddington (1960), Dungey (1961),
Parker (1961), Spreiter and Briggs (1961, 1962) used k = 1. A proper under-
standing of the value of k was first provided by Spreiter et al. (1966), and this
value was used by later authors such as Unti and Atkinson (1968), Spreiter and
Rizzi (1974), Sibeck et al. (1991), Zhang et al. (1991), and Sibeck (1995)). The
best value for k takes into account the inelastic interaction of the solar wind. It
does not bounce back toward the Sun. Thus k is unity adjusted downward by
about 12% to account for the divergence of the streamlines around the obstacle.
Nevertheless there is a problem with this relation. Specifically, this formulation
breaks down as  approaches 90� because the exterior pressure as determined by
this relation approaches zero. If this were true, then either the magnetotail radius
would never reach an asymptotic value far downtail, or the total pressure interior to
the magnetopause would decrease to zero far downtail. This is contrary, however,
to observations. In addition, the magnetosheath velocity along the magnetopause
surface as determined from Equation (30) exceeds the solar wind velocity as  
approaches 90�, as illustrated in Figures 7 and 8 for a polytropic index of 5

3 and
upstream sonic Mach numbers of 5 and 1.1, respectively. In a purely hydrodynam-
ic flow this cannot happen (Spreiter et al., 1966), because there is no source for
the additional kinetic energy. This clearly illustrates that this relation is a poor
approximation far downtail.

3.1.2. P jOB = Pst cos2  + P1; Q = P1
This formulation has been used by several authors (Spreiter and Alksne, 1968,
1969; Coroniti and Kennel, 1972; Howe and Binsack, 1972; Sibeck et al., 1985;
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Figure 7. Hydrodynamic parameters along the magnetopause, for Ms1 = 5 and  = 5
3 .  = 0�

corresponds to the subsolar position, while  = 90� corresponds to the position of the boundary
surface which is parallel to the upstream velocity vector. (a) Thermal pressure ratio. (b) Mass density
ratio. (c) Total velocity ratio.

Slavin et al., 1985; Petrinec and Russell, 1993, 1996; Zhang et al., 1994, 1995;
Spreiter and Stahara, 1995), and provides reasonably accurate solutions for large
upstream Mach numbers. Usually, the solar wind magnetic field pressure is also
added to the right-hand side, andP1 is replaced withPstatic. This equation, however,
is again only an approximation. The addition of these pressure components of the
solar wind is to provide a finite external pressure to the magnetosphere as  
approaches 90�. Here we consider the hydrodynamic case only, with no solar wind
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magnetic field. Figures 7 and 8 also illustrate the norrnalized thermal pressure, ion
density, and velocity along the magnetopause surface. It can be seen that while
the magnetosheath thermal pressure and density are now non-zero at  = 90�,
these values are also larger at the stagnation point than the previous relation. In
particular the thermal pressure does not agree with that derived in Equation (41),
indicating that this relation is incorrect near the stagnation region. This point is
even more clearly shown with the consideration of the velocity relation near the
obstacle. While the velocity remains less than the solar wind velocity far downtail,
the velocity is imaginary in the subsolar region (and over much of the dayside
magnetosphere for Ms1 = 1:1 (Figure 8)).

3.1.3. P jOB = Pst cos2  + P1 sin2  ; Q = P1 sin2  
This is the simplest formulation which satisfies both the demands of hydrodynamic
flow at the stagnation position, as well as the demands far downtail (see Figures 7
and 8). This appears to be the only solution that satisfies all of the above conditions
and for which the parameters vary monotonically from the subsolar region to the
distant downtail region. Thus it should be used at a minimum when there are
boundaries which are defined by a balance of pressure. This relation has in fact
been used in earlier aerodynamic studies; e.g., Linnell (1958) (hypersonic flow
around a sphere) and Daskin and Feldman (1958) (hypersonic flow for a sail (a
surface which is also defined by pressure balance)), but not in magnetospheric
applications.

One aspect not discussed in the above treatment of plasma flow near the mag-
netopause is the concept of centrifugal force. This force was first considered in detail
by Busemann (1933), and has since come to be known as the Newton–Busemann
approximation. The conjecture is that as the flow is forced around a curved obstacle,
the fluid experiences a centrifugal force. The Newton–Busemann ‘approximation’
suggests that there is a substantial decrease to the pressure of the fluid upon the
obstacle, and implies the total pressure exterior to the obstacle becomes negative
before  even reaches 90�. This decrease has been considered in the past to not
be valid for hydrodynamic flow around a solid obstacle for several reasons (cf.,
Seiff, 1962), not the least of which is that the differences are much larger than are
observed experimentally. Nevertheless, the Newton–Busemann approximation has
been used in studies of magnetospheric physics (Freeman et al., 1995). Freeman
et al. (1995) postulate that the flow can detach from the magnetopause surface as
a shock wave. They further theorize that this shock layer is thickened, though it
has never been modeled. Centrifugal acceleration effects near the magnetopause
were also used by Zwan and Wolf (1976) for the case of a perpendicular upstream
magnetic field. It is unclear, especially for an obstacle whose size and shape are
determined by pressure balance, how any centrifugal acceleration would affect the
flow. More thorough theoretical studies of the pressure across the magnetopause,
and throughout the magnetosheath are needed.
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Figure 8. Same as Figure 7, but for Ms1 = 1:1.

3.2. WITH MAGNETIC FIELD (�B�v = 0� OR 180�)

We now examine the effect of the inclusion of an upstream magnetic field vector
parallel to the upstream velocity vector. It can be shown that Equations (35)–(38)
remain unchanged (as long as the shock is not a ‘switch-on’ shock, which will
be discussed further below). In the case of field-aligned flow, there can be no
energy transfer between the magnetic and kinetic energies of the plasma, and the
equations are decoupled. It can also be shown that in this situation, Bernoulli’s
equation remains the same. Thus, the parameters along the obstacle (the thermal
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pressure, density, and velocity) are described exactly by Equations (42)–(44), and
are independent of the magnetic field. Since the magnetic field is everywhere
parallel to the velocity vector (because the tangential electric field must be zero on
both sides of the bow shock, given implicitly by Equation (5) above), and because
both the magnetic field and the mass flux are divergenceless, then along every
streamlineB = ��v, where � is a global constant (Grad, 1960; Spreiter and Rizzi,
1974). (This assumption is very strong and probably does not hold well in the real
world, with anisotropic plasma pressures generating plasma instabilities, including
ion cyclotron and firehose instabilities (see Quest (1988) for a comprehensive
investigation)). We use this assumption to estimate the total incident pressure
(summation of magnetosheath thermal and magnetic pressures) along the obstacle
under these conditions (using the relation in Section 3.1.3) as

PT jOB = k�1v
2
T1 cos2  + P1 sin2  +

B2
T1

2�0

�
� v jOB

�1vT1

�2

; (45)

where � jOB and v jOB are given in Table III, for  = 5
3 .

When the solar wind magnetic field energy is large enough, however, the Alfvén
Mach number and plasma � then are small enough that the ‘switch-on’ shock
solution applies. In this case the magnetic field and velocity vectors downstream
from the bow shock are still parallel to one another (Kennel and Edmiston, 1988
(neglecting instabilities generated by anisotropies in the plasma)), but the flow
is deflected from the subsolar line (the acquired tangential momentum of the
downstream flow is compensated by electromagnetic forces within the shock layer).
Therefore, the streamline which passes through the subsolar point (�v�n = 0�) on
the shock surface is no longer the stagnation streamline with zero velocity at the
magnetopause. The stagnation streamline at the magnetopause then is one which
intersects the bow shock at a non-zero value of �v�n, and indicates that a simple
solution to the Navier–Stokes equation cannot be determined. We are thus unable
to solve explicitly for the magnetosheath parameters along the boundary surface.
This situation is analogous to that noted by Walters (1964) for IMF directions
which are neither aligned with nor perpendicular to the solar wind velocity vector.
Walters (1964) predicted that under such conditions, the symmetry axis of the
magnetopause will rotate significantly (as much as 25�) to align itself with the
shocked stagnation streamline. It is expected, however, from consideration of the
distribution of pressures along the magnetopause (Zhuang et al., 1981) that the
symmetry of the entire magnetopause surface will be broken, such that a fit of the
dayside magnetopause to an elliptical conic section will result in a rotation of the
ellipse symmetry axis which is much less than predicted by Walters (1964) (cf.
Russell et al., 1981).
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3.3. WITH MAGNETIC FIELD (�B�v = 90�)

We next examine the case for which the upstream magnetic field is perpendicular to
the upstream velocity vector. We can determine the thermal pressure, density, and
velocity across the bow shock. In addition, an explicit ‘Bernoulli-like’ equation
relating the parameters downstream of the bow shock to those at the stagnation
position of the obstacle (denoted with the st subscript) can be derived as follows:

1
2
v2
T +



 � 1
P

�
+
B2
T

�0�
=



 � 1
Pst

�st
+
(B2

T )st
�0�st

: (46)

As before, we also have the adiabatic relation P�� = Pst�
�
st . However, we

cannot decouple the magnetic field from the other components in Equation (46),
as we had done earlier for field-aligned flow. Thus, we do not know how the
energy is partitioned between the kinetic, thermal, and magnetic components. In
addition, along the obstacle the flow is aligned with the draped magnetic field in
one direction (along the z-direction, using the scenario of Figure 3), while the
flow is perpendicular to the magnetic field along the orthogonal direction (the y-
axis in Figure 3). The division of pressure between kinetic, thermal, and magnetic
pressures appears to be due to additional processes occurring in the flow and is
not simply imposed by the (fast) bow shock wave. The most comprehensive and
rigorous treatment to date of the flow properties near the magnetopause for an
upstream magnetic field which is perpendicular to the upstream flow velocity is
the approximate numerical solution of Zwan and Wolf (1976). The Zwan and
Wolf model predicts that shocked solar wind plasma is squeezed out along the
magnetic field lines, as the plasma is convected towards the magnetopause. This
process creates a ‘depletion layer’ close to the magnetopause; a region of depressed
plasma density and enhanced magnetic field (assuming no field line merging). This
model has received observational support by Crooker et al. (1979), using IMP 6
observations, as well as support from the numerical simulations of Wu (1992).

In contrast to this model, however, it had been argued by Southwood and
Kivelson (1992) from consideration of the fundamental modes of plasma wave
theory that the opposite effects should be observed close to the magnetopause; i.e.,
an increase in plasma density and a decrease in magnetic field.

A proposed reconciliation of these contradictory models has recently been
presented by Southwood and Kivelson (1995). This model proposes that as the
shocked solar wind plasma approaches the magnetopause along the stagnation
streamline, it will pass through a slow mode front, thereby increasing the plasma
density and decreasing the magnetic field strength. As the plasma continues to
move still closer to the magnetopause, however, it must pass through the region
described by Zwan and Wolf; namely a decrease in the observed plasma density
and increase in the magnetic field strength. Observations of magnetosheath plasma
density enhancements and subsequent decreases closer to the magnetopause have
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been reported by Song et al. (1990, 1992), using observations by ISEE 1 and 2.
All three of the above scenarios were numerically modeled by Lee et al. (1991).
The nature of these waves depends on both plasma � and the direction of the IMF
with respect to the magnetospheric field. A complete analytic solution remains to
be determined, however.

4. Summary

In this study, we have presented an exact solution to the Rankine–Hugoniot rela-
tions over the entire bow shock surface. However, the Rankine–Hugoniot relations
themselves are only approximations, since parameters such as the thermal pressure
are assumed to be well represented by scalar quantities, rather than by tensors. In
addition, the equations are non-relativistic and do not account for the curvature
of the shock surface. Nevertheless, it is expected that the explicit solutions given
above provide an accurate determination of parameters adjacent to the downstream
side of the bow shock as a function of the solar wind conditions. We have also
examined the phenomenon of the ‘switch-on’ shock solution in context with the
Rankine–Hugoniot relations, and its relation to the shock surface as a whole. We
find that the ‘switch-on’ shock solution is contained within the solution represented
by Equation (13). However, the ‘switch-on’ part of the solution only occurs for
cases of magnetosonic Mach numbers close to unity and small values of plasma
�. In addition, the ‘switching-on’ of the downstream magnetic field and velocity
components parallel to the shock surface occurs only at a singular point on the
shock surface; i.e., where the upstream magnetic field direction is exactly normal
to the shock surface.

We have also found that the total velocity downstream of the bow shock can
slightly exceed the upstream total velocity when the IMF is not perfectly aligned
with or perfectly perpendicular to the upstream velocity vector. This is due solely
to the frame of reference. In the NIF of reference, the downstream-to-upstream
total velocity ratio does not exceed unity anywhere on the shock surface.

Although we understand analytically how the parameters downstream of the
bow shock are determined from the upstream parameters, this does not give us any
information as to the shock shape or its position from the obstacle. With the use of
Bernoulli’s equation and the condition of adiabatic flow we are able to determine
the parameters at the stagnation position. However, even with these equations, the
spatial gradient from the shock to the obstacle of the changes in pressure, dens-
ity, or velocity are not known. Thus, without any spatial scales, we are unable
to determine the shock standoff position or shape with respect to the obstacle. In
hydrodyamics, earlier studies have treated this problem by estimating the form of
the stream functions (and related parameters such as vorticity). However, no exact
analytic solution has yet been obtained, even for a shock wave in front of a sphere
in a purely hydrodynamic flow. Nevertheless, there have been attempts to use the
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hydrodynamic results from theory and experiment to develop approximate func-
tions of the distance from the magnetopause to the bow shock along the stagnation
streamline (Spreiter et al., 1966; Farris and Russell, 1994; Cairns and Grabbe,
1994; Russell and Petrinec, 1996; Grabbe, 1996). In addition, there are several
MHD computational models of the magnetosphere which have been developed
(Ogino et al., 1992; Voigt and Wolf, 1988; and others), and could be used to study
the shock shape and position and to compare with satellite observations.

We have examined the Newtonian approximation along the surface of an
obstacle. Several functions for the pressure relation along the obstacle have been
examined in the hydrodynamic situation, and it is found that the best choice of the
pressure balance relation, especially for boundaries which are themselves defined
via pressure balance, is PT jOB = k�1v

2
T1 cos2  + P1 sin2  . Other relations

which are commonly found in the literature are often useful for their simplicity,
but fail either as  approaches 90�, and/or when the upstream sonic Mach number
is small (but larger than unity).

We have also examined the Newtonian approximation for specific orientations
of the IMF with respect to the upstream velocity vector. When the magnetic field
is aligned with the upstream velocity, the pressure exterior to the obstacle can be
determined as PT jOB = k�1v

2
T1 cos2  +P1 sin2  +B2

T1=2�0 (except when
the ‘switch-on’ shock solution is appropriate; then the stagnation streamline no
longer coincides with the subsolar streamline, and an exact analytic solution is not
yet known).

For general values of �B�v , we have not solved explicitly for the above paramet-
ers, because the Navier–Stokes equation (which is an integral equation, but under
special circumstances can be reduced to Bernoulli’s equation) cannot be analyt-
ically integrated. In addition, the stagnation streamline does not coincide with
the subsolar streamline when the IMF and upstream velocity vectors are neither
aligned with nor perpendicular to one another. Thus, the total pressure along the
obstacle is not exactly known, and only approximate solutions (like those used in
the literature) are the best that can be done at present.

Thus, there are several areas for which future efforts at understanding the physics
of the magnetosheath region should be directed. The change in parameters across
the bow shock are understood analytically; however, analytic and exact functions of
the shape and size of the bow shock in relation to the obstacle in an MHD fluid are
not yet known. In addition, the properties of the plasma along the obstacle are only
known for perfectly aligned flow, whenM 2

A > (1+(1��))=(�1) and� > 2=.
For other orientations of the IMF with respect to the upstream velocity, only rough
approximations are used. Lastly, analytic functions of the parameters throughout
the entire magnetosheath region would be highly useful but are presently lacking.
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