Retarding Potential Analyzers

GRID DESCRIPTION

- G1- DUAL APERTURE
- G2- DUAL RETARDING
- G3- SUPPRESSOR G4- SHIELD
- In the ionosphere, mount along ram velocity, measure species densities
 - Ram speed (7.5km/s) is high or supersonic relative to ion thermal speed or motion
 - Spacecraft charging is negative and small relative to motional energy
 - I-V curve has steps at $qV_{ret} = \frac{1}{2}m(V_{sr}+V_r)^2 q\psi_s$; where: $\psi_s = \text{sensor potential relative to plasma, } V_{sr} = \text{ram speed}$

Heelis and Hanson, 1998

- Homework #1 Show that the thermal width of the steps is m $V_{sr}V_{th}$, where V_{th} is the ion species thermal speed. Show that for sensor potential of -0.8V, the step functions are at 1.1V for H⁺ and 6V for O⁺.
- Ions can be further differentiated with mass spectrograph behind RPA
 - See: Chappell et al., The retarding ion mass spectrometer on DE-1, Space Sci. Instr. 4, 477, 1981

RPA/Ion Drift Meters

Magnetic Spectrographs

Magnetic Spectrograph on CRRES

- For low energy particles (left):
 - post-acceleration V_{pa} behind an RPA provides V, T and m/q
 - Homework #3 Show that in LIMS: $m/q = (Br_c)^2/(2V_{pa})$, where B is magnetic field, r_c magnet curvature
- For higher energy particles (right):
 - Broom magnet clears electrons
 - High field bends high energy ions
 - Ions that were not bent assumed neutrals (ENAs)
- Further reading:
 - Reasoner et al., Light ion mass spectrometer for space-plasma investigations: Rev. Sci. Instr. 53(4), p. 441, 1982.

Electrostatic Analyzers

- Electrostatic deflection analyzes velocity distribution
 - Analyzer constant, $K=R_1/\Delta$, where $\Delta=R_2-R_1$; Outer shell is at 0 Volts, inner shell at potential V.
 - Electrostatic deflection at entrance aperture can measure incoming ions from different directions if spacecraft non-spinning
 - Homework #4 Show that the energy E of the particles of charge q, incident on the MCP is E=-K q V /2
- Further reading:
 - Carlson et al., The electron and ion plasma experiment for FAST: Space Sci. Rev. 98, 33, 2001.
 - McFadden et al., The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., in press

ESS 265

Low Energy Particle Instruments 4

- Electrostatic deflection => energy per charge: E/Q. Time of flight, τ , => energy per mass E/M
 - Post-acceleration U_{ACC} provides sufficient energy for optimal McP operation and timing electrons at foil
 - Electrons generated at carbon foil result in energy loss α
 - Homework #5. Show $M/Q=2(E/Q + qU_{ACC})/(d/t)^{2*\alpha}$
- Further reading:
 - Moebius et al., 3D plasma distribution analyzer with time-of-flight mass discrimination for Cluster, FAST and Equator-S, in Space Sci. Rev., in Measurement Techniques in Space Plasmas: Particles, Geophys. Monogr. Ser. 102, AGU, 1998

ESS 265

Low Energy Particle Instruments 5