Solid State Detectors and Instrumentation

Davin Larson 2008-04-23 Solid State Detectors and Instruments - Outline

Outline:

- Energy loss in Matter
- Energetic Particle Detectors
- Instrument Design

Solid State Detectors and Instruments - Outline

Outline:

- Energy loss in Matter
 - Photons
 - Charged Particles
 - Ions
 - Electrons
- Energetic Particle Detectors
- Instrument Design

Energy loss in Matter

- The manner in which energetic particles interact with matter depends upon their mass and energy.
 - Photons have "infinite range"- Their interaction is "all-or-nothing" They do not slow down but instead "disappear", typically through 1 of 3 interactions:
 - Photoelectric effect (Low energy: E<~50 keV)</p>
 - Compton Scattering (50 keV ~< E < 1 MeV)</p>
 - Pair production ($E > 2 \times 511 \text{ keV}$).
 - Particles with non-zero mass (Electrons and lons) will slow down as they pass through matter.

Energy Loss in Matter – Particles with mass

Charged particles primarily interact with the electrons in a material. Typically the energetic particle suffers numerous, distant collisions with a Fermi sea of electrons losing a small amount of energy with each interaction (much like a plasma!).

- The interaction is typically strongest when the velocity of the energetic particle is approximately the same as the Fermi speed.
- Energetic neutral atoms are quickly ionized soon after entering the solid.
- Neutrons are a different matter altogether

Energy Loss in Matter

The stopping power for heavy particles is given by the Bethe-Bloch formula (1932):

$$-\frac{dE}{dx} = \frac{4\pi N_A z^2 e^4}{m_e c^2 \beta^2} B$$

Where:

$$B = \frac{Z\rho}{A} \left[\ln\left\{\frac{2m_e c^2 \beta^2}{I(1-\beta^2)}\right\} - \beta^2 - \frac{C}{Z} - \frac{\Delta}{2} \right]$$

Rate of energy loss is ~ inversely proportional to energy, and proportional to z, (the effective charge)

• The range is given by:

$$R = \int_{Estart}^{0} \left(\frac{dE}{dx}\right)^{-1} dE$$

This formula is only useful for ions for reasons we will soon see.

- Some Useful Software tools for determining /simulating the passage of particles through Matter
 - NIST stopping power and range
 - Estar electrons
 - Pstar protons
 - Astar alphas
 - CASINO Electron propagation
 - SRIM Ion Propagation
 - GEANT Does everything!

Energy Loss in Matter -Electrons

Energy Loss in Matter- Protons

Enerov Loss in Matter - Alphas

Figure 1-1 The Stopping of Ions in Various Solids

This figure shows the stopping power of ions from H to U in various elemental targets from C to U. The stopping is in units of $eV/(10^{15} \text{ atoms/cm}^2)$, which is approximately the energy loss per monolayer of a solid. The ion energies extend over eight orders of magnitude, which covers most scientific applications. The data in this figure will be used later in this chapter to illustrate advances in stopping theory.

Energy Loss in Matter – Differences between electrons and ions

- Electrons and lons behave differently due to the different mass ratio:
- The primary interaction of all energetic particles is with the sea of electrons.
- Ions interact with a series of distant collisions. Each interaction results in a small energy loss and very little angular scattering. They travel in nearly straight lines as they slow down. The dispersion is small. (Imagine a fast bowling ball thrown into a sea of slow moving ping pong balls.)
- Electrons can lose a large fraction of their energy and undergo large angle scattering with each interaction (Imagine a high speed ping pong ball thrown into the same sea)

- When an electron hits an atom it can undergo a very large angle deflection, often scattering it back out of the material.
- Bremstrahlung (breaking) radiation is produced when electrons undergo extreme accelerations. X-rays are easily generated when energetic electrons strike high Z materials. (a good reason to avoid high Z materials on exposed surfaces)

Solid State Detector – Simulation tools

- CASINO " monte CArlo SImulation of electroN trajectory in sOlids ".
 - A very useful simple tool that simulates electron propagation within solids
 - Developed for electron microscopy
 - http://www.gel.usherbrooke.ca/casino/index.html

This program is a Monte Carlo simulation of electron trajectory in solid specially designed for low beam interaction in a bulk and thin foil. This complex single scattering Monte Carlo program is specifically designed for low energy beam interaction and can be used to generate many of the recorded signals (X-rays and backscattered electrons) in a scanning electron microscope. This program can also be efficiently used for all of the accelerated voltage found on a field emission scanning electron microscope(0.1

to 30 KeV)

Simulation of 30 keV electrons in Silicon

Electron Trajectories (16 % backscattered in red)

Distribution of Maximum Z value. Mean: 45 microns Ion simulation software

- SRIM/TRIM "Stopping and Range in Matter"
- Only for ions
- Download from: <u>http://www.srim.org/</u>
- Simple to use.

TRIM Simulation - 30 keV

 Simulation results for 30 keV ions in Silicon detector
 Ionization energy not collected in

UCLA

TRIM/ SRIM ion simulation

TRIM Setup Window	
Read I I I Me I I I	Type of TRIM Calculation DAMAGE Ion Distribution and Quick Calculation of Damage
TRIM Demo ?	
Restore Last TRIM Data ? Basic Plots Ion Distribution with Recoils projected on Y-Plane ?	
Symbol Name of Element ? ION DATA PT H Hydrogen	Number Mass (amu) Energy (keV) Angle of Incidence 1 1.008 350 ? 0
TARGET DATA Input Elements to Layer 5	
Lavers Add New Laver ?	Add New Element to Layer Compound Dictionary
Layer Name Width (g/cm3) 0	pound Atomic Weight Atom Damage (eV) Corr Gas Symbol Name Number (amu) Stoich or % Disp Latt Surf
X Al 1 1000 Ang 2.702 1	► X PT Si Silicon 14 28.08 1 100.15 2 4.7 ▲
X Lexan 50000 Ang 💌 1.2 1	
× AI 2 1000 Ang ▼ 2.702 0	
X Gap 10000 Ang ▼ 0.0012 0	
X Detector 10000 Ang 2.3212 0	
Special Parameters Name of Calculation Stopping Powe	er Version ? I fon Ranges
H (350) into Al 1+Lexan+Al 2+Gap+Detector SRIM-2008	? ? Backscattered Ions ? Resume saved TRIM calc.
? AutoSave at Ion # 10000 Plotting Wind	dow Depths ? 2 Transmitted Ions/Recoils Use TRIM-96
7 Total Number of Ions 200 Min	A Collision Details Collision Details Collision Details
Random Number Seed	72000 Å 2 0 Special "EXYZ File" Increment (eV) Main Menu
	Problem Solving Quit

UCLA

Energetic particle simulation tools

GEANT4 – GEometry ANd Tracking

- The ultimate simulation tool
- Developed at CERN for high energy particle accelerators and detectors
- Allows complex 3D geometries
- Simulates all particles (electrons/ion/photons) and recursively tracks all daughter products.
- Fairly difficult to use.
- May not be accurate at low energy (<10 keV) ?</p>
- Now available on WINDOWS/XP!
- More info at: http://geant4.web.cern.ch/geant4/

- Energy loss in Matter
- Energetic Particle Detectors:
 - Solid State Detectors
 - Silicon Solid State Detectors
 - PIPS
 - Surface Barrier
 - Lithium Drifted Silicon
 - High Purity Germanium
 - Light producing detectors
 - Scintillators
 - Organic
 - Inorganic
 - Cherenkov Radiators
 - New Technologies
 - Avalanche Photodiodes
 - CCD Readout
 - Delta-doped
- Instrument Design, Test and Calibration Instruments

Energetic Particle Detectors

- Solid State Detectors (SSDs) not only detect individual particles, they can be used to measure particle energy with good energy resolution.
- Typically only good for E>20 keV
- Recent improvements push the limit to ~2 keV

Silicon Diode Detectors

Two varieties of Silicon Diode Detectors

- Implanted Ion (i.e. Canberra PIPS)
 - Produced by implanting p-type material into an n-type silicon substrate
 - Easy to produce pixelated surfaces
 - Very rugged
- Surface Barrier
 - Chemical process to create diode surface
 - Easily damaged, sensitive to solvents
 - Not too common anymore
- Typically both varieties are run fully depleted (electric field extending throughout bulk of material)
- Maximum thickness is ~1000 microns defines max energy particle that can be stopped within the detector
- Particles can be incident on either side of detector

Other Detectors Continued...

Lithium Drifted Silicon

- Requires (?) LN2 storage for stability
- Can be made in thicknesses up to 1 cm to stop very energetic ions (~100 meV)
- Reduced energy resolution for ion studies

HP (High Purity) Germanium

- Expensive!
- Large Z high stopping power
- Very large form factor are possible
- Generally used for x-rays, gamma-rays
- CdZnTd (Cad Zinc Telluride)
 - High Z
 - Cheaper than Ge

Solid State Detectors – Principle of operation

- With the application of a (large enough) reverse bias voltage an electric field is established throughout the silicon.
- An energetic charged particle will leave an ionization trail in its wake.
- The electron hole pairs will separate and drift to opposite Energetic sides.
- The total charge is proportional to the electronic energy deposited. (3.61 eV per pair for Silicon).
- The signal contains only a few thousand electrons thus requiring sensitive electronics.
- The trick is to collect and measure this small signal.

Other detector types

Scintillators

- Emit light when charged particle traverses the material.
- Light output is approximately linear with deposited energy
- Light is typically collected with a photomultiplier
- Easily shaped to accommodate instrument requirements
- Relatively poor energy resolution
- Often used as active shielding (veto device) or as final stop for very energetic particles (cosmic rays)
- Two Classes:
 - Inorganic (Ionic crystals, ie. Nal is very common)
 - High stopping power (high Z)
 - Organic (plastics)
 - Generally have low stopping power
 - Very fast (good for coincidence events)
- Cherenkov Detectors
 - Utilizes Cherenkov radiation emitted when a particle travels faster than speed of light in that medium (extremely relativistic particles only)

Instrument Design

- Energy loss in Matter
- Energetic Particle Detectors:
- Instrument Design
 - Issues to be aware of:
 - Choice of shaping time/
 - Pulse Height Defect
 - Dead Layers
 - Radiation Damage
 - Light Sensitivity
 - Paralyzibility of charge sensitive amplifiers
 - Pulse Pileup
 - Electronic Noise Limitation
 - Cooling / Temperature sensitivity
 - Micro-acoustic sensitivity
 - Magnetic cleanliness

The AMPTEK preamplifier

Instrument Electronics

Solid State Telescope examples –WIND EPACT

Cross section of the EPACT isotope telescope on Wind. The first two detectors are two-dimensional position sensitive strip detectors (PSD1, PSD2). They are required so that path-length corrections may be made for the angle of incidence and for non-uniformities in detector thickness. Tungsten rings are used to mask off circular areas for each PSD. There are 6 solid-state detectors increasing in thickness with depth in the stack in order to minimize Landau fluctuations. From von Rosenvinge et al. [1995].

Solid State Telescope examples – WIND SST

Fig. 9. An array of two double-ended telescopes is shown in a section view. Particles entering the two upper collimators pass through a sweep magnet while those entering the lower collimator pass through a thin lexan foil.

Examples of High energy particle instruments

Proposed Instrument that combines SSDs, active shielding, and scintillators. Used to detect particles >400 MeV

Sensor Cross Section

April 23, 2008

Overview

- Solid State Telescope (SST)
 - Requirements and Specifications
 - Block Diagram
 - Mechanical Design
 - Detectors
 - Collimation
 - Magnets
 - Attenuator (aka shutter, door)
 - Detector placement / FOV issues
 - Mass estimates
 - Electrical Design
 - DFE (Detector Front End)
 - DAP (Data acquisition and Processing)
 - Power Estimates
 - Testing and Calibration
 - Schedule
 - Issues

Science Requirements

- SST-1: The SST shall perform measurements of the tailward-moving current disruption boundary speed using the finite gyroradius technique (4.1.1.2, 4.1.1.5).
- SST-2: The SST shall measure the time-of-arrival of superthermal ions and electrons of different energies emanating from the reconnection region to determine the Rx onset time (4.1.1.3, 4.1.1.5).
- SST-3: The SST shall compute the partial energy moments due to the superthermal ions and electrons in the magnetotail plasma sheet (4.1.1.3, 4.1.1.6, 4.1.1.7, 4.1.1.9, 4.1.1.10).
- SST-4: The SST state by preserve the provident of the lectron distribution functions (2000) (4.1.1.2, 4.1.1.3).
- SST-5: The SST shall measure energetic electron fluxes as close to Earth as 6RE geocentric, at all local times. (Radiation belt sciencetertiary objective – achieved by nominal design).
- SST-6: The SST shall measure energetic ions in the solar wind, at the magnetopause and in the magnetosheath (Dayside science – secondary objective – achieved by nominal design).

Performance Requirements

- SST-7: The SST shall measure energetic particles over an energy range of 30-300keV for ions and 30-100keV for electrons found in the magnetotail plasma sheet (SST-1, SST-2).
- SST-8: The SST energy sampling resolution, dE/E, shall be better than 30% for ions and electrons (SST-1, SST-2).
- SST-9: The SST shall be capable of measuring differential energy flux in the range from: 10^2 to 5x10^6 for ions; 10^3-10^7 for electrons (keV/cm2-s –st- keV) whilst providing adequate counts within a 10 second interval. (exact values TBD) (SST-1, SST-2)
- SST-10: The SST shall measure over 90° in elevation with a minimum resolution of 45° (SST-1, SST-2, SST-3, SST-4).
- SST-11: The SST shall 1/2 // 14 //

40

► SST-12: The SST shall supply the high energy partial

Overview

- Solid State Telescopes:
 - Measure Energetic Electrons and Ions
 - Energy Range:
 - H+: 25 keV to 6 MeV (possible ~2 MeV)
 - Electrons 25 keV to ~800 keV
 - Angular Coverage:
 - Theta
 - □ 4 look directions (+55, +25, -25, -55)
 - □ Resolution: ~ 30 deg FWHM
 - Phi
 - □ 32 sectors
 - Resolution: ~20 deg FWHM
 - □ Geometric Factor: ~0.1 cm2-ster (~1/3 of WIND)
 - Pinhole Attenuator: Cuts geometric factor by 64

Block Diagram

Sensor Units

- Each sensor unit is a:
 - Dual-double ended solid state telescope
 - Each double ended telescope (1/2 sensor) has:
 - Triplet stack of silicon solid state detectors
 - Foil (on one side)
 - □ Filters out ions <~350 keV
 - Leaves electron flux nearly unchanged
 - Magnet / Open side
 - □ Filters out electrons <400 keV
 - Leaves ion flux nearly unchanged
 - Mechanical Pinhole attenuator
 - Reduces count rate during periods of high flux
 - Reduces radiation damage (caused by low energy ions) during periods of high flux
 - Collimators
 - Preamplifier / shaping electronics

Sensor Unit Schematic

Sensor Cross Section

Design Details Thomas Moreau

Sensor Considerations

Detector system

Measure electrons and protons > 20 keV

Geometrical analysis

- Collimator aperture
- Solid state detector size
- Thin foil
 - Stop protons < 350 keV</p>

Attenuator System

- Magnet system
 - Deflect electrons < 400 keV</p>
 - Not to disturb particle trajectories out of the magnet gap
 - Low stray magnetic field at the position of the magnetometers

April 23, 2008

Detector System

UCLA

Collimator System

3D numerical model (GEANT3) of the collimator with detectors/foil Collimator baffle offers 4

 Collimator baffle offers 42°
 × 23° rectangular full fieldof-view

- Be-Co knife-edges intercept out-of-beam low-energy particles and reduce scattered light
- Aluminum housing shielding (0.5 mm) stops normally incident protons < 8 MeV and electrons < 400 keV
- Al/Polyimide/Al (*LUXÉL*) three layer foil (~1500Å/4µm/1500Å)

absorbs protons < 350 keV

49

Telescope Response

Monte-Carlo simulation

- 3D ray tracings are performed: a clean electron-proton separation is obtained
- Particles' angular distributions are determined (27° × 14° FWHM)

• Efficiency plots of the electron-

Magnet System

Magnetic circuit design

 4 permanent magnets (*Dexter Magnetic Technologies*) + 2 yokes (*Vacuumschmelze, Germany*)

Magnet System

UCLA

Detector Pixelation

Detectors similar to STEREO/STE

Produced at LBNL/Craid Tindall PL

ETU Sensor Testing

ETU Sensor Testing

SST MECHANICAL

Robert K. Lee

- Solid State Telescope (SST)
 - Mechanical Requirements
 - Mechanical Design
 - SST Sensor Unit Buildup
 - Sensor Unit Mounting Using Kinematic Flexures
 - Attenuator Actuation
 - Attenuator Control
 - Analysis Results
 - Attenuator Mechanism
 - Modal Analysis
 - Quasi-Static Acceleration
 - Attenuator Mechanism Cycling Test
 - Electronics and Cabling
 - Mass Summary

- SST Sensor Unit Buildup
 - DFE Board Subassembly
 - Magnet-Yoke Subassembly
 - Attenuator-Actuator Subassembly
 - Collimators
 - Support Structure
 - Bi-Directional FOV
- Sensor Unit Mounting Using Kinematic Flexures
- Attenuator Actuation
 - Linear Actuators
 - Position Switches
- Attenuator Control
- Electronics and Cabling
 - DAP Board
 - Harness
- Mass Summary

Actuators and Position Switches

Sensor Orientation Relative to Spacecraft Bus

SST Thermal / Mechanical Design

- Sensor Unit Mounting Using Kinematic Flexures
 - Each sensor mounted to spacecraft panel at three points
 - One rigid mounting flange
 - Two mounting flanges with kinematic flexures
 - Allows relative motion due to CTE differences between sensor structure and spacecraft panel
 - Predicted expansion differential along instrument axes with 120 °C temperature gradient:
 - □ X-Axis: 0.006" (0.15 mm)
 - □ Y-Axis: 0.013" (0.33 mm)
 - Flexure dimensions sized to keep maximum bending stresses below 6061-T6 yield strength
 - Factor of Safety (F.S.) > 1.4 per NASA-STD-5001

Attenuator Actuation – CLOSED position

Attenuator Control – CLOSED to OPEN (INITIAL)

 Attenuator Control – OPEN to CLOSED (INITIAL)

Attenuator Control – Switch Activation

Cam Rotation Angle

Note: Sketch NOT drawn to scale

Analysis Results - Attenuator Mechanism

- SMA pull-force of 125 grams
 - Mechanism required force < 42 gram => F.S. > 3.0 SST SMA Actuator Load Profile

Cam Rotation (deg)

Analysis Results - Modal Analysis
 ALGOR FEMPRO Version 13.30

- First Mode @ 600 Hz
- Second Mode @ 1200 Hz
- Third Mode @ 1550 Hz
- Modal f

Finite element model with mass simulators

Norman Yana 2.23Mill 84(6/12)

Maximum Value: 1728-41 Brillin'S

ned Cane: 1 vf (denmum Value: 1eC 24 845(V2)

- Attenuator Mechanism Cycling Test
- Run over 40,000 cycles
- Pivot shaft (303 Stainless) showed significant abrasion damage on contact surfaces with sapphire bearings
 - Subsequent shafts to be treated as follows:
 - Titanium Nitride (TiN) coating to increase hardness
 - Tungsten Disulfide (WS₂) coating for dry film lubrication
- Required SMA stroke reduced from 3.5 mm to 3 mm for additional operating margin (maximum stroke: 4 mm)
- Mechanism test will be performed again with modified components on ETU (late April 2004) with minimum target of 150,000 cycles
 - Target values based on 10 times expected number of actuations on-orbit
 - Cycle counting will not be necessary for flight components

- Linear Actuators
 - Shaped Memory Alloy (SMA) actuator
 - Single direction 125 gram pull-force
 - Required force < 42 gram => F.S. > 3.0
 - Operating temp range: -70°C to +75°C

Relative Size (commercial model shown)

Extended Position

Retracted Position

- Position Switches
 - Honeywell miniature hermetically sealed switches
 - Single-Pole-Double-Throw (SPDT)
 - □ Operating temperature range: -65°C to +121°C
 - Exceeds MIL-S-8805 shock and vibration requirements

Extended Position

Nitrogen Purge Connection

- Nitrogen line is connected to SST purge fitting during preflight operations to purge instrument interior
- Gas supplied at 5 psig

Electronics and Cabling

- DAP Board
 - Located within IDPU
 - Type 6U card
 - Radiation shielded with 5mm of aluminum
 - Will be discussed in further detail in IDPU section
- Harness (per sensor)
 - Approximate length of 1.6m x 64 gm/m
 - Composition:
 - 13 x 36 AWG coaxial cables 6 Signals, 6 Test, 1 Bias voltage
 - □ 3 x 28 AWG wire 2 Door monitors, 1 Temperature
 - □ 3 x 24 AWG (TT) Door Open/Close power
 - □ 2 x 26 AWG (TP) Heater supply
 - □ 3 x 26 AWG (TT) Preamp Power
 - 26 pin HD Cannon at each end

SST Mass Summary

Mass Summary: Sensor: 586 gm Cable: 122 gm Total x2= 1416 gm

Reasons for increased mass: Bigger magnets: ~+50 gm Inaccurate estimates: +50 gm Parts not included: ~+170 gm

Note: First estimates were based on unreasonably low estimates of the WIND SSTs

SST Mass Estimates					ltem Mass [q]	Items/unit	Mass [g]		# units	Total Mass [q]		%	%
Sensors													
Magnets					9.6	4	38.4					6.6	
Yoke					33.2	2	66.4					11.3	
Magnet and Yoke Cage					16.7	1	16.7					2.8	
Retainer plates and fast	eners				1.4	4	5.7	•				1.0	
Sub total Magnet Asse	mbly							127.2					21.7
Housing 20 mil (front an	d back)				107.1	1	107.1					18.3	
Bottom closeout 62.5 mi	1				14.3	1	14.3					24	
Collimators (with baffles)				14.4	4	57.7					9.8	
Attenuator cover	, 				18.6	2	37.2					6.3	
Thermal Spacer					0.3	6	1.9					0.3	
Baseplate Washer					1.6	3	4.9					0.8	
Housing fasteners					0.8	16	12.2					2.1	
Sub total Housing								235.3					40.1
Attenuator (axle/4 paddle	es/2 can	ns, 2 levers	,2 bearir	ngs, 8 se	10.6	1	10.6					1.8	
HM Switch Assembly (m	nounting	plate, sprir	ng, nut pl	ate, plur	9.8	2	19.6					3.3	
HM Switch (w/ aux lever)	,	5,		5.8	2	11.7					2.0	
SMA actuator (nanomus	, scle. T-b	one, nut pla	ate and s	crews)	4.6	2	9.2					1.6	
1/2 Winchester w/o wire	ə				1.7	2	3.3					0.6	
Sub total Attenuator								54.4					9.3
Connector (26 pin DD v	/ nut pla	te)			92	1	92	•				16	0.0
Internal wires					15.0	1	15.0					2.6	
DEE board (unloaded)					10.3	2	20.6					3.5	
DEE EEE parts					5.7	2	11.4					1.9	
Amotek 225FB					23	6	14.0					2.4	
Amptek Shield Cover (3					22.0	2	44.0					7.5	
Detectors					22.0	8						0.0	
Detector Stack					10.0	2	20.0					3.4	
Polyamide Foil & Holder					1 0	2	3.7					0.6	
Thermostat					7.8	2	15.6					2.7	
Heater Patch					2.2	2	13.0					0.7	
1/2 Winchester w/e wire	````				1 7	2	4.5					0.7	
scrows and nom nute					1.7	2	3.5	-				1.4	
Sub total DEE accomb	h.				1.1	0	0.5	160.6				1.4	20.0
	iy						50C F	103.0	2	1172.0		100.0	20.9
Sensor Total:							500.5	200.2	2	1172.9		100.0	100.0
Cables:													
Custom (see below)	64.7	gm/m	1.6	m	103.6	1	103.6						
Connectors (26 pin DD)					9.0	2	18.0						
Cable Total:							121.6		2	243.1			
								Non II	OPU mass:	1416.0	gm		
IDPU electronics													
DAP Board (unloaded)	0.39	gm/cm1	368.0	cm1	142.0	1	142.0						
DAP board components	0.39	gm/cm2	368.0	cm2	142.0	1	142.0						
shield board	0.10	gm/cm2	368.0	cm2	36.8	1	36.8						
Shielding penalty			69.3	cm3			187.2						
IDPU Total:							508.0		1	508.0			
Total										1924 0	am		
i otal.						l							

- Unit Level Test Requirements
 - Attenuator Mechanism Cycling
 - ETU target of 150,000 cycles (10x expected on-orbit maximum value)
 - Vibration
 - Per THEMIS Instrument Payload Environmental Verification Plan and Test Specification THM-SYS-005B
 - □ Sine burst, random, sine sweep
 - Updated test levels to be provided by Swales in place of GEVS
 - Thermal-Vacuum
 - Per THEMIS Instrument Payload Environmental Verification Plan and Test Specification THM-SYS-005B

April 23, 2008 Sensor alone 8 Cycles

THEMIS Environmental Test Matrix

HARDWARE								MEC	HANI	CAL						E	ELECT	RIC	AL						THERMAL			со	NTAN	IINAT	ION					OTHER	
COMPONENT (ITEM)	QUANTITY	SUPPLIER	ALIGNMENT	MODAL SURVEY	STATIC LOAD	RANDOM VIBRATION	SINE VIBRATION	ACOUSTIC	PROOF TEST	CLAMP BAND SHOCK	VENTING/PRESSLIRE PROFILE	MASS PROPERTIES		MECH FONCTION	INTERFACE VERIFICATION		CONDUCTED EMISSIONS CONDUCTED SUSCEDTIBILITY			RADIATED SUSCEPTIBILITY	THERMAL VACUUM (# CYCLES)	THERMAL BALANCE	THERMAL AIR (# CYCLES)	THERMAL LIMITS (OPERATING, DEPLOY)	THERMAL PREDICTS	THERMAL TEST LIMITS (QUAL) LIMITS +/-10C VAC; +/-15C AIR	THERMAL TEST LIMITS (ACC) PREDICTS +/-10C VAC; +/-15C AIR	ESC AND GROUNDING	DC MAGNETICS	AC MAGNETICS	BAKEOUT	RADIATION	OPERATING HOURS	FAILURE FREE HOURS	WORST-CASE ANALYSIS	COMMENTS	
Instrument Payload	6	UCB													T	9 T	10 T1	10 T	10 T	10	6			-30 to +45		-40 to +50	-40 to +55			M3	T14		1000	100			
SST Sensor	2	UCB		T1	A2	T4	T5				A	7 M	1 T	7	T	9					2			-65 to +40	-52 to +13	-75 to +50	-65 to +30	T11	M2			Α	100		Α		

notes

T1 0.25a sweep from 5 Hz to 2000 Hz

A2 Analysis to show margin on Yield at 2.0 x limit load; and Ultimate at 2.6 x limit load

T3 Test conducted at 1.25 x limit load

- T4 ETU tested to Qual: F1 tested to Protoflight: F2-F6 tested to Acceptance, Levels from coupled loads analysis
- T5 ETU tested to Qual; F1 tested to Protoflight; F2-F6 tested to Acceptance (sine profile in thm-sys-005)

T6 ETU tested with SC shock test

- A7 Analysis to show margin at 2 x maximum pressure differential (launch ascent profile in thm-sys-005)
- M1 Mass, CG and MOIs measured
- T7 At least 10 x number of actuations during the mission life, unless mechanism is on Limited Life Items List
- T8 SPB Motor to go through Life Test operation after 6 months (TBR)
- T9 Safe-to-Mate and compliance to ICD prior to Integration
- T10 Per MIL-STD-461C (levels in thm-sys-005)
- T11 Grounding checked for each component prior to integration
- M2 DC Magnetics measured prior to Instrument Payload integration
- M3 AC Magnetics measured in mag facility at Probe Level
- T12 Total Dose and SEE Testing at part level if necessary
- T13 60C for 48 hours prior to TV w/ integrated payload
- T14 Contamination Verification w/ TQCM during Instrument Payload Thermal Vac

Solid State Telescope Thermal

- Christopher Smith
- Thermal Engineer
- csmith@ssl.berkeley.edu

510-642-2461

- Mounts directly to the corner panel on three 1/8 inch isolators
- Has four open apertures that are sometimes obscured by attenuators

Must operate at April 20,20 Deg C or less

SST Geometry Model

SST Model Inputs

Optical materials

- Ebanol
- AZ 2000 IECW White Paint
- Alodined Aluminum
- Thermophysical materials
 - Aluminum, 6061
 - ULTEM
- Heaters
 - Two 5 watt heaters per sensor head controlled by redundant thermostats
 - Set points –50 and -42
- Conductors
 - 3 ULTEM isolators to corner panel, 0.0078 < G < .0133
 W/C each

April 23 20 Bower Dissipation UCLA

0.405 M/M_{off}

SST Case Sets

SST

UCB Case Set	Optical Properties	Blanket	Solar Aspect Angle	Solar Flux	Earth IR	Earth Albedo	Power Dissipation	Conductors	Eclipse Length	Orbit	Swales Bondary Condition
Coldest	BOL	N/A	77	1287	209	0.16	0.2295	High	180	P1	SAA 77 Cold
											Low Power
Cold	BOL	N/A	77	1287	209	0.16	0.2295	High	180	P1	SAA 77 Cold
Nominal	BOL	N/A	90	1356	235	0.255	0.27	Nominal	180	P1	SAA 90 Cold
Hot	EOL	N/A	103	1425	261	0.35	0.3105	Low	0	P4	SAA 103 Hot
Top To Sun Cold	BOL	N/A	0	1287	209	0.16	0	High	180	P1	SAA 0 Hot
Bottom To Sun Cold	BOL	N/A	180	1287	209	0.16	0	High	180	P1	SAA 180 Hot

SST – Nominal Plots

SST - Alodine and AZ 2000 IECW White Paint, 10 W Heater (04/12/04)

SAA 103 Hot Aperture Closed - SAA 103 Hot - SAA 90 Cold - SAA 77 Cold - SAA 77 Cold Low Power

SST – Top and Bottom to Sun Plots

SST - Alodine and AZ 2000 IECW White Paint, 10 W Heater (04/12/04)

SST Results Table

SOLID STATE TELESCOPE

	SST1/SST2 INTERNAL					
	MIN	AVE	MAX			
Cold - Low Power	-50.4	-27.4	-18.9			
Cold	-49.5	-22.6	-13.8			
Nominal	-22.3	-20.4	-19.0			
Hot	1.8	5.0	11.1			
Hot Aperture Closed	2.2	5.3	11.3			
Top To Sun Cold	-55.2	-37.0	-23.4			
Bottom To Sun Cold	-51.0	-43.0	-37.7			

	SST TOP								
MIN	AVE	MAX							
-62.5	-29.5	-20.3							
-62.2	-25.1	-16.0							
-23.1	-22.4	-22.4							
0.7	2.7	7.9							
1.1	3.0	8.2							
-53.8	-26.6	-23.1							
-66.4	-60.2	-56.0							

	MIN	LIMIT	MARGIN	
Science Operation	-27.4	-55	27.6	
Eclipse Operation	-55.2	-65	9.8	
Survival	-55.2	-65	9.8	

MIN	LIMIT	MARGIN
-29.5	-80.0	50.5
-62.5	-80.0	17.5
-66.4	-80.0	13.6

	MAX	LIMIT	MARGIN
Science Operation	5.0	40	35.0
Eclipse Operation	11.3	40	28.7
Survival	11.3	65	53.7

MAX	LIMIT	MARGIN
2.7	65.0	62.3
8.2	65.0	56.8
8.2	65.0	56.8

SST – Coldest Heat Map

SST Hottest Heat Map

Tests and Calibration Thomas Moreau

Tests Magnet System

- 2 magnet assemblies assembled for prototype
- Spot-checks of measured magnetic field versus those obtained from the analytical calculations are done: small discrepancy due to the misalignment of vector magnetization and the non-uniformity of magnetization
- The discrepancy of magnetic properties between 4 magnets of each assembly is minimized
- Magnetic induction in the center of the gap is measured ~2.23 kG (in agreement with 2.24 kG of the model)

April 23, 2008 April 23, 2008 and additional measurements at IGPP/UCLA

101

Tests and Calibration

- Need to characterize the sensor response in terms of:
 - Species (electron, proton, oxygen and helium ions)
 - Energy: determine the detection threshold for a particular channel
 - determine the energy thresholds for the coincidence counting rate channels
 - to provide the look-up tables
 - Angle: determine the off-axis response (including information on the response to scattered

April 23, 2008 particles)

Calibration Set Up

- Initial calibrations at SSL, Ba-133, Bi-207, Cd-109 and Cs-137 conversion electron sources will be used to determine channel energies over the range 62 keV to 1060 keV
- Low-energy (up to 50 keV) and detection efficiency calibration for both electrons and protons will be done at the new SSL acceleration facility

Apr 3, Additional energy and detection efficiency 103

Magnetics Testing

- Magnet Cage assembly #1
- Measured Py for 19 magnets (All values were very close)
- Selected 4 magnets for assembly #1
- Measured dipole and quadrapole moments of assembly

Magnetics Testing

Magnetics Testing

- Sent Magnet Cage assembly #2 to UCLA for testing
- Results are virtually the same
- Contribution of dipole and quadrapole fields are similar at 2 m:

□ B(dipole @ 2m) = .88 nT

Electrical Systems

Electronics Block Diagram

Signal chain: 1 of 12 channels shown

SST Schematic

DFE Schematic

DFE Schematics

Detector Front End Schematic

-Single Channel

Preamps/Shaping

- Using Amptek 225FB (6pin sip Hybrid special request)
- Characteristics:
 - □ ~6 keV electronic noise (with 1.5 cm² detector)
 - ~2.5 uS shaping time (time to peak)
 - ~26 mW (Increases with negative supply voltage)
 - 100 Krad (still needs ~3mm Cu shield)
 - □ Operating range: -55 10 + 125 (16.6) -

DFE Layout

- ETU board layout (version 2).
 - A225FBs have 3.5 mm Cu radiation shielding
 - Caps/Resistors have
 ~0.5mm AI shielding
 - Detectors located near Detector Stack
 - Flexible, rugged desigh

3- A225FBs

Dual supply allows negative output pulses

End of Presentation

ETU DFE Assembly

ETU DFE Assembly

DFE/Mechanical Mating

DAP Schematic

ADC Schematic

Quad Converter Schematic

Peak Digitizer Schematic

Test Pulse Schematic

Bias Supply Schematic

Controller Schematic

FPGA Schematic

DAP Layout

Layout:

- •Started: ~2004-01-05
- Finished:
 ~2004-03-24
 Partially loaded
 Poord Passived:

Board Received: 2004-04-05

- •Actel Installed: 2004-04-12
- •Testing: Still in progress-

•Issues:

-Peak detect chatter -Channel cross talk -FPGA lockup -Erratic FPGA current

Power Estimates

SST Power Estimates	;		Current				
		2.5	5	5	5		
		+2.5V D	+5V D	-5V A	+5V A	Power	
		(mA)	(mA)	(mA)	(mA)	mW	
DFE electronics							Estimated Power
A225FB	(assume	es 2.5 volt n	egative ref)	1.800	3.450	26.25	
x	12			21.600	41.400	315.00	
							Consumption:
IDPU electronics							
ADC channels							1200 mW
OP462				2.200	2.200	22.00	$\sim 1200 \text{ III W}$
CA3080A				0.075	0.075	0.75	
MAX907					1.400	7.00	
LTC1604			0.955	0.650	0.955	12.80	
Gate transistors					0.016	0.08	
subtotal			0.955	2.925	4.646	42.63	
ADC subtotal x	12		11.460	35.100	55.752	511.56	
Threshold (quad)							
AD5544				0.000	0.050	0.25	
OP462				2.200	2.200	22.00	
subtotal				2.200	2.250	22.25	
TH subtotal x	3		0.000	6.600	6.750	66.75	
			ĺ				
LT1217				1.000	1.000	10.00	
Test Pulse & Bias cont	rol						
AD5544			0.000	0.000	0.050	0.25	
OP462			0.000	2.200	2.200	22.00	
TP&BC subtotal			0.000	2.200	2.250	22.25	
Bias Voltage circuit							
AD648				0.680	0.680	6.80	
						5.00	
POR			0.200			1.00	
FPGA (actel)		0.000	48.000			240.00	
SRAM (128K)		0.000	0.000			0.00	
			0.000			1172.90	
Total		0.000	50 660	67 100	107 822	1172.30	mW
IUlai		0.000	J 000.6C	07.100	107.032	1173.30	

FPGA Requirements

Usinge Actel RT54SX72S (modeled on STEREO/STE)

- Controls 12 ADCs
 - Monitor / Count threshold events
 - Monitor peak detect signal
 - Produce convert strobe
 - Coincidence detection
 - Readout ADC (energy)
- Psuedo-logrithmic energy binning
 - ADC measurement used as address of LUT to increment accumulators (LUTs and accumulators stored in SRAM)
- Data Readout (controlled by ETC board)

Command Data Interface Fight (Ppr tables)

April 23, 2000 est Pulser control

ACTEL Development

- Designed by Jianxin Chen Baja Technologies
- First installed 2004-04-12 (one week ago)
- Functionality:
 - Controls 12 ADCs
 - Monitor / Count threshold events Working
 - Monitor peak detect signal
 - Produce convert strobe
 - Coincidence detection
 - Readout ADC (energy)

Test Pulser control - 2222

- Psuedo-logrithmic energy binning
 - ADC measurement used as address of LUT to increment accumulators (LUTs and accumulators stored in SRAM) -????
- Data Readout (controlled by ETC board) ????
- Command Data Interface (CDI) (loads tables) -working

- Working

- Working

- ????
- ????

SST GSE Jim Lewis

SST/DAP GSE Block Diagram

SST/DAP GSE Software

Capabilities:

- Scripted or interactive entry of CDI, GPIB, and manipulator commands
- Simulates ETC board to command DAP and acquire telemetry
- Real-time display of counter histograms, raw hex telemetry dumps, analog housekeeping values, manipulator status
- Monitoring of CDI commands to mirror DAP memory operations and validate correct DAP FPGA operation
- Telemetry and log messages archived to disk for later examination and processing
- Device control
 - GPIB programmable LV and HV power supplies, digital multimeter

April 23, 2008

Internal PCI motion controller, external servo amp and motor

GSE Screen Shots

THEMIS SST GSE	_ _ ×	😿 Manipu	ılator						
Remote IP address:	Find GPIB Devices	File Edit	View						
Port number:	FTO TID		Current Po:	sition	Soft	Limits	Encoder Counts	In Motion	
\$8087		Linear	0.00	cm 🗐	-10.00	10.00	12816	۲	
CONNECT	DAP Memory Mirror	Yaw	0.00	deg 🚽	-15.00	15.00	12816	۲	
	LUT View Selection	Rotation	0.00	deg 🚽	-45.00	₹ 45.00	12816	۲	
msgs sent 🚽 0	Mem Fill Addr ×0	C	d					_	
bytes sent 🖬 0	Mem Fill Length × 0	Command	l status						
msgs rovd 🛛 d O	Mem Fill Value 🛛 d O	Manipula	tor command						
bytes rovd 👩 0	Last CDI commanded values	😿 Be	ertan 5KV H	¥P5			_O×		
CDI response			Edit View						
		GP	IB response		😿 Berta	an 30K¥ H¥PS			_ 🗆
CDI command					File Edi	t View			
		GP	18 command		GPIB r	esponse			
DAP LUT Memory Mirr	or Dump FTO: 001 TID: 00 Offset: (GP18	command			
File Eald view					-		Send		
Byte count 4096									
DE AD BE EF DE DE AD BE EF DE	AD BE EF DE AD BE EF DE 4 AD BE EF DE AD BE EF DE 4	AD BE EF AD BE EF	DE AD E DE AD E	E EF E EF	DF DF Voltage	e	Voltage Li	mit	
DE AD BE EF DE DE AD BE EF DE	AD BE EF DE AD BE EF DE 4 AD BE EF DE AD BE EF DE 4	AD BE EF	DE AD E	E EF	DI DI Curren	t	Current Lir	nit	
DE AD BE EF DE DE AD BE EF DE	AD BE EF DE AD BE EF DE 2 AD BE EF DE AD BE EF DE 2 AD BE EF DE AD BE EF DE 2	AD BE EF	DE AD E	E EF E EF	DI DI DI ID Shir	20		,	
DE AD BE EF DE DE AD BE EF DE	AD BE EF DE AD BE EF DE 4 AD BE EF DE AD BE EF DE 4 AD BE EF DE AD BE EF DE 4	AD BE EF	DE AD E	E EF E EF	DI ID SUI	·9]			
DE AD BE EF DE	ad be ef de ad be ef de 4 An rf ff nf An rf ff nf 2	ND BE EF	DE AD E DF AD F	11 10 구구 구(DI				

GSE Screen Shots

Testing and Calibration

- GSE Devolopment
- Vacuum Chamber Refurb
- Ion Gun (Peabody Scientific)

Contamination Control

- Standard cleanliness procedures will be followed
- The sensor units will have a dry Nitrogen purge system and red tagged covers (removed at last possible opportunity)
- Nitrogen purge can be removed for transport (<24? hours) with sensor in sealed containers.
- Red tape to cover apertures during spin balance

Sensor contamination free fairippering April 13 2008 Ap

Vacuum Chamber refurb

9/11/2003					
item	description	vendor	p/n	price(\$)	note
1	Cryo Pump	СП	8160001sys	14200.00	Cryo-Torr 8 / 8200 Compressor System, complete
2	Cryo temp indicator	СП	8043459G001	1372.00	Cryo head temp monitor
3	chamber gate valve	MDC	304005-05	2825.00	8" port, 1-1/2" rough port, ANSI ASA6 flanges
4	gate valve hardware	MDC	190177	74.00	hex head bolts for ASA6 flange
5	Turbo-V 301 Navigator	Varian	9698828	7280.25	complete system w/ controller, N2 250 L/s, 120VAC, ISO NW100
6	turbo air cooling kit	Varian	9699299	297.60	very convenient
7	turbo inlet screen	Varian	9699302	76.60	
8	SH-100 Scroll pump	Varian	SH01001UNIV	2450.00	backing pump for turbo, 120VAC, 60Hz, oil-free
9	exhaust silencer	Varian	SH0100EXSLR	83.00	
10	scroll pump power cord	Varian	656458203	free	15A/125VAC, 6' length
11	adapter nipple	MDC	832008	225.00	ISO NW100 to ISO NW80 reducer
12	reducing cross	MDC	825043	290.00	ISO NW80 to NW40 KF
13	Ion Chamber valve	MDC	306005	1500.00	4" port manual swing gate valve, ISO NW100 flange
14	roughing valve	MDC	312029	340.00	2-3/4" CCF, metal seal bonnet, manual
15	vent valve	Varian	9515085	325.00	Rt angle valve, NW16 KF, manual
16	regen valve	MDC	310073	245.00	NW25 KF, metal seal bonnet, manual
17	vacuum gauge controller	Granville-Phillips	307502-C10-T1	2095.00	307, dual IG/rough gauge capability, IEEE 488
18	ion chamber rough gauge	Granville-Phillips	275316	180.00	Convectron gauge(1), range atm to 8e-4 Torr, NW40 KF
19	chamber rough gauge	Granville-Phillips	275316	180.00	Convectron gauge(2), range atm to 8e-4 Torr, NW40 KF
20	ion chamber ion gauge	Granville-Phillips	27453	470.00	BA Nude IG(1), all metal case, NW40 KF
21	chamber ion gauge	Granville-Phillips	27453	470.00	BA Nude IG(2), all metal case, NW40 KF
22	rough gauge cables	Granville-Phillips	303040-10	90.00	Dual Convectron cable, 10'
23	ion gauge cable	Granville-Phillips	307046-CR	140.00	BA IG cable
24	ion gauge cable	Granville-Phillips	307046-CR	140.00	BA IG cable
25	misc.plumbing			2000.00	fittings, rough lines, switches, etc.
26	cleaning chamber	Pullbrite(510 659-9770)		750.00	soak, scrub, and electropolish
27	half nipple	Varian	INH1000400	100.00	ISO NW100 weldable to chamber
28	in house fab	SSL shop		1325.00	25 hr @ \$53.00/ hr
			Total	39523.45	

Ion Gun Specifications

10/6/2003			
	List of S	specs	
	1	energy range	1KeV to 50 KeV
	2	energy width	0.5% over full range or 50eV, whichever is greater
	3	energy stability	1% over full range for 20 minutes
	4	particle flux	1000 to 100000 particles/s/cm ²
	5	beam cross section	4 cm diameter
	6	beam flux stability	<2% for 20 minutes
	7	beam flux variation	<20% over cross section
	8	species	H^{+} , He^{+} , Ne^{+} , O^{+} , N^{+} , Ar^{+} , (Kr^{+})
	9	mass resolution	distinguish above species
	10	system footprint	not to exceed 9' x 4' (preference, not required)
	11	power requirement	120VAC
	12	cooling requirements	preferably air, but H ₂ O OK
	13	lead time	4 to 5 month
	14	vacuum system req	ability to interface to 250 l/s turbo pumping system

Ion Gun Schematic

Detector Schedule

						2003						2004							
ID	0	Task Name	Start	Finish	Duration	J F M	A M	JJ	A S	0	N D	JFM	A	M	J,	JA	S C) N	TD
0		THEMIS SST	Thu 5/1/03	Wed 10/20/04	385 days												_		
83		SST FLT	Mon 9/29/03	Wed 10/20/04	278 days		Ť											j –	
84		SST FLT DETECTOR FAB	Mon 9/29/03	Wed 8/11/04	228 days					ý—						_		•	
85	\checkmark	SST FLT Det Photo Mask Design	Mon 9/29/03	Fri 10/24/03	1 mon					-	LBNL Team					-			
86	\checkmark	SST FLT Det Photo Masks Promt	Mon 1/26/04	Fri 2/6/04	2 wks							LBNL Tean	1						
87	 ✓ 	SST FLT Fab Batch I Det Getter Layer	Mon 9/29/03	Fri 10/24/03	1 mon						LBNL Team								
88	1	SST FLT Fab Rework Batch II Det Getter Layer	Mon 2/23/04	Wed 8/11/04	123 days														
89	· · · · ·	SST FLT Fab Batch II Det Getter Layer (25)	Mon 2/23/04	Fri 4/2/04	6 wks								LBNL	Team		•			
90		SST FLT Implantation Batch II (25)	Mon 4/26/04	Wed 5/26/04	4.6 wks									h	BNL Tea	Im			
91		SST FLT Bk Side Repolishing Batch II (25)	Thu 5/27/04	Wed 7/14/04	7 wks											LBNL T	eam		
92		SST FLT Mounting Batch II (25)	Thu 7/15/04	Wed 7/21/04	1 wk											LBNL	Team		
93		SST FLT Detector Batch II Dice	Thu 7/22/04	Wed 7/28/04	1 wk											LBN	L Team		
94		SST FLT Detector Batch II Test	Thu 7/29/04	Wed 8/4/04	1 wk											LB	NL Team		
95		SST FLT Detector Batch II Mounting	Thu 8/5/04	Wed 8/11/04	1 wk											L	BNL Team		
96		SST FLT Fab Rework Batch III Det Getter Layer	Fri 10/24/03	Mon 6/14/04	166 days														
97	✓ 	SST FLT Fab Batch III Det Getter Layer (13)	Fri 10/24/03	Fri 10/24/03	0 days					•	10/24								
98		SST FLT Implantation Batch III (13)	Tue 3/16/04	Mon 4/5/04	3 wks								BNL	. Team					
99		SST FLT Bk Side Polishing Batch III (13)	Tue 4/6/04	Mon 4/26/04	3 wks									BNL T	eam				
100		SST FLT Mounting Batch III (13)	Tue 4/27/04	Mon 5/3/04	1 wk									LBNL	Team				
101		SST FLT Detector Batch III Test (13)	Tue 5/4/04	Mon 5/24/04	3 wks									-L	BNL Tea	m			
102		SST FLT Detector Batch III Dice	Tue 5/25/04	Mon 5/31/04	1 wk										LBNL Te	am			
103		SST FLT Detector Batch III Test	Tue 6/1/04	Mon 6/7/04	1 wk										LBNL 1	Team			
104		SST FLT Detector Batch III Mounting	Tue 6/8/04	Mon 6/14/04	1 wk										LBNL	. Team			

Schedule

				2003	2004					2005
ID	0	Task Name	Finish	J F M A M J J A S O N D	J F M A	M	JJA	S		ONDJFMAMJJ
56	√ ∜	SST DFE ETU PWB Fab	Tue 10/14/03	Valley Circuit						
57	\checkmark	SST DFE ETU Assy	Tue 10/21/03	Helen Yuan				П		
58	1	SST DFE ETU Prelim Ter	Tue 11/4/03	Bon Canario				Ħ		
59	iz l	SST DFE ETU Lavout Re	Fri 2/27/04		Jeanine Potts			H		
60	×	SST DEE ETU PWB Exh	Wed 3/3/04		Valley Circu			++-	++-	
	×		Wei 20004		valley circu			₩.		
61	\checkmark	SST DFE ETO Parts Kit I	Wed 3/3/04		Jorg Fisher			ш.		
62	\checkmark	SST DFE ETU Assy II	Wed 3/10/04		- Yvette			Ш		
63	\checkmark	SST DFE ETU Final Test	Wed 3/17/04		Ren Ce			ш		
64		SST ETU Sensor Testing	Wed 5/12/04					П		
65	1	SST ETU Sensor DFE Fit	Thu 3/25/04		Robe	Lee		Ħ		
66	r -	SST ETU Vibration Level	Wed 4/21/04			Swales		H		
67		SST ETH Sensor Whe Dr	Eri 4/30/04			Babar	t1.00	++		
60		COT ETU Eventional Test	Wed EEM4			- Robert	t Lee			
00	\square	SST ETU Puncional Test	Wed 5/5/04			Robe	ert Lee	₩.		
69		SST ETU Sensor Therma	Wed 5/12/04			Ro	obert Lee	11		
70		SST ETU DAP Board (IDPU)	Thu 5/1/03							
71	1	SST ETU Mated Test	Wed 5/26/04				Larson	ш		
72		SST ETU Complete	Wed 5/26/04				5/26	Ш		
73		SST GSE	Fri 4/30/04					П		
74	\checkmark	SST GSE FPGA	Fri 2/27/04		Frank Harvey	·		Ħ		
75		SST GSE SW	Fri 2/13/04		Lewis[50%]			Ħ		
76	Ż	SST Manipulator Refurbishing	Fri 1/30/04		Lewis[50%]			H		
77	×	SST Manipulator Motor Replaceme	Fri 3/12/04		Dan Sahi	kolo		++	++-	
78		Vacuum Chamber Refurb	Tue 3/9/04							
70	√	Victoria Chamber Realization	Tue 40004							
79		Vacuum Chamber Replacement	Tue 4/20/04			harquare	a.	11		
80		Ion Gun Procurement	Fri 4/30/04			Ion Gu	un(†)	ш		
81		SST FLT	Fri 10/22/04							
82		SST FLT DETECTOR FAB	Wed 8/11/04							
83	\checkmark	SST FLT Det Photo Mask Des	Fri 10/24/03	LBNL Team				П		
84	\checkmark	SST FLT Det Photo Masks Pro	Fri 2/6/04		LBNL Team			П		
85	$\sqrt{4}$	SST FLT Fab Batch I Det Gett	Fri 10/24/03	LENL Team				Ħ		
86	<u></u>	SST FLT Fab Rework Batch	Wed 8/11/04					Ħ		
87	Ž	SST FLT Fab Batch II De	Fri 4/2/04		18	L Team		H		
88	×	SST FLT Implantation Ba	Wed 5/26/04				I BNI Team	H		
89		SST FLT Bk Side Repole	Wed 7/14/04				I BNI Team	++		
00		SST ELT Mounting Batch	Wed 7/21/04				LUNK Team			
		SOT FLT Modifieling Batch	Wed 7/2//04				LONC TEAL	1		
		SST FLT Detector Balch	Ved //20/04				L DNL IE	am		
92		SST FLT Detector Batch	Wed 6/4/04				LBNUT	Team		
93		SST FLT Detector Batch	Wed 8/11/04					L Tea	m	
94		SST FLT Fab Rework Batch	Mon 6/14/04							
95	√ ∜	SST FLT Fab Batch III De	Fri 10/24/03	10/24	<u>_</u>					
96	\checkmark	SST FLT Implantation Ba	Mon 4/5/04		LE	NL Team		П		
97		SST FLT Bk Side Polishir	Mon 4/26/04			LBNLT	Team .			
98		SST FLT Mounting Batch	Mon 5/3/04			LBNL	L Team	T		
99		SST FLT Detector Batch	Mon 5/24/04				LENIL Team	Ħ		
100		SST FLT Detector Batch	Mon 5/31/04				LBNL Team	H	++	
101	\vdash	SST FLT Detector Batch	Mon 6/7/04				LBNL Term	H	++-	
102		SST ELT Detector Batch	Mon 6/14/04				I PNI Team	++	++-	
103	\vdash	SST FLT Mech Fabrication	Wad Sitting				-com ream	++	++	
105		COT EI T Mechanical Dedecia	Wed 601104							
104	\vdash	SOT FLT Mechanical Redesigi	Wed 6/2/04				Robert Lee		++-	
100		SST FLT Attenuator Compone	wed ordu/04				vendor	11	11	
106		SSTELT Attenuator Assy	wed 7/14/04				Robert Lee			
107		SST FLT Attenuator Cycling T	Wed 8/11/04				Robe	et Lee		
108		SST FLT Magnet & Yoke Macl	Wed 6/23/04				Vendor			
109		SST FLT Magnet Cage Machii	Wed 6/16/04				Vando	П		
110		SST FLT Magnet Cage Assy &	Wed 7/14/04				Robert .ee			
111		SST FLT Structure Componen	Wed 6/16/04				Vendo			
<u> </u>				·						

Schedule

0 0 Tak here Panh A N A S O N A N A N A N A N D T N A N D T N D T N D T N D T N D T N D T N D T N D T D <th< th=""><th>F M A M J J</th></th<>	F M A M J J
112 B81 FT 0 South Away Weid 0004 113 B81 FT 0 Columb Away Weid 0004 114 B81 FT Columb Away Weid 0004 115 B81 FT Columb Away Weid 0004 116 B81 FT Columb Away Weid 0004 117 D01 FT FT Away FW Weid 0004 118 D01 FT FT Away FW Weid 0004 119 D01 FT FT Away FW Weid 0004	
111 0.877.17.00m/00.Maliver, Wer 5055 115 0.877.17.00m/00.Maliver, Wer 5055 116 0.877.17.00m/00.Maliver, Wer 5055 117 0.177.17.00m/00.Maliver, Wer 5055 118 0.977.17.00m/00.Maliver, Wer 5055 119 0.977.17.00m/00.Maliver, Wer 5055 110 0.977.17.00m/00.Maliver, Wer 5055 111 0.977.17.00m/00.Maliver, Wer 5055 112 0.977.17.00m/00.Maliver, Wer 5055 113 0.977.17.00m/00.Maliver, Wer 5055 114 0.977.17.00m/00.Maliver, Wer 5055 115 0.977.17.00m/00.Maliver, Wer 5055 116 0.977.17.00m/00.Maliver, Wer 5055 117 0.977.17.00m/00.Maliver, Wer 5055 118 0.977.17.00m/00.Maliver, Wer 5055 119	
1110 05 TT (2 Collector Setters 10 Wee 6050 115 05 TT (2 Collector Setters 10 <	
115 0.817 (1 Columnor Awy Verd 2026 116 0.817 (1 Columnor Awy Verd 2026 117 0.87 (1 Columnor Awy Verd 2026 118 0.87 (1 Columnor Awy Verd 2026 119 0.97 (0 Columnor Awy Verd 2026 120 0.97 (0 Columnor Awy Verd 2026 121 0.97 (0 Columnor Awy Verd 2026 123 0.97 (0 Columnor Awy Verd 2026 124 0.97 (0 Columnor Awy Verd 2026 125 0.97 (1 Columnor Awy Verd 2026 126 0.97 (1 Columnor Awy Verd 2026 127 0.97 (1 Columnor Awy Verd 2026 128 0.97 (1 Column	
110 00171178. Mar 30 Conjunt War 60100 117 00171178. Mar 30 War 60000 118 01071178. Mar 30 War 60000 119 01071178. Mar 30 War 60000 120 01074. Ur 30. Mar 30 War 60000 130 01074. Ur 30. Mar 30 War 60000 131 01074. Ur 30. Mar 30 War 60000 132 01074. Ur 30. Mar 30 War 70000 133 00174.07 Mar 41 War 70000 134 01074.07 Mar 41 War 70000 135 000000000000000000000000000000000000	
117 0FT-FT space Mole, Weight Sold, W	
110 DTR 11 Pays Nois West 5051 110 DTR 11 Pays Aug West 5055 120 DTR 11 Pays Aug West 5055 121 DTR 11 Pays Aug West 5055 122 DTR 11 Pays Aug The 7005 123 DTR 11 Pays Aug The 7005 124 DTR 11 Pays Aug The 7005 125 DTR 11 Pays Aug The 7005 126 DTR 11 Pays Aug The 7005 127 DTR 11 Pays Aug The 7005 128 DTR 11 Pays Aug The 7005 129 DTR 11 Pays Aug The 7005 130 DTR 11 Pays Aug The 7005 1313 DTR 11 Pays Aug The 70	
110 DPT11 TWM Fax Wee Prove Low 2000 Wee Prove Low 2000 Low 2000 <thlow 2000<="" th=""> <thlow 2000<="" th=""> <th< td=""><td></td></th<></thlow></thlow>	
101 DPENT Cogons Weed 5000 122 DPENT for Twee 7746 The 7764 123 DPENT for Thr 1/4 Wee 7764 124 DPENT for Thr 1/4 Wee 7764 125 DPENT for Thr 1/4 Wee 7764 126 DPENT for Thr 1/4 Wee 7764 126 DPENT for Thr 1/4 Wee 7764 127 DPENT for Thr 1/4 Wee 7764 128 DPENT for Thr 1/4 Wee 7766 129 DPENT for Thr 1/4 Wee 7766 129 DPENT for Thr 1/4 The 7866 129 DPENT for Thr 1/4 The 7876 129 DPENT for Thr 1/4 The 7876 129 SET for Thr 1/4 The 7876 129 <th></th>	
132 DFE MPT 19 The 7004 Mem 7204 133 DFE MPT 19 The 7004 Link 1 mem 7204 134 DFE MPT 19 The 7004 Link 1 mem 7204 135 DFE MPT 19 The 7005 Link 1 mem 7204 136 DFE MPT 19 The 7005 Link 1 mem 7204 137 DFE MPT 19 The 7005 Link 1 mem 7204 138 DFE MPT 19 The 7005 Link 1 mem 7204 139 DFE MPT 19 Mem 7204 Link 1 mem 7204 139 DFE MPT 19 Mem 7204 Link 1 mem 7204 139 DFE MPT 10 Mem 7204 Link 1 mem 7204 139 DFF MPT 10 Mem 7204 Link 1 mem 7204 139 DFF MPT 10 Mem 7204 Link 1 mem 7204 139 DFF MPT 10 Mem 7204 Link 1 mem 7204 139 DFF MPT 10 Mem 7204 Link 1 mem 7204 139 DFF MPT 10 Mem 7204 Link 1 mem 7204 139 BFT M The 8104 Link 1 mem 7204 139 BFT M Mem 7204 Link 1 mem 7204 139	
127 075 Arm (* 740 170 arm (* 740 138 075 Arm (* 740 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) Wei 7050 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) Wei 7050 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) Wei 7050 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 138 075 Arm (* 741) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 139 075 Arm (* 741) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 139 075 Arm (* 740) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 130 057 Arm (* 740) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 131 057 Arm (* 740) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740) 100 arm (* 740	
138 DFLOT Many Mon 7000 138 OFBOT Train 14 Wes 7000 Image: Second Se	
136 070001 Yaki Yaki Weighand 0 00000 Yaki Yaki Weighand 0 00000 Yaki Yaki Yaki Weighand 138 070001 Yaki Yaki Weighand 0 0 00000 Yaki Yaki Yaki Yaki Yaki Yaki Yaki Yaki	
100 1	
128 0 HESS Tent / 2 1 / 1 / 100000 127 0 HESS Tent / 3 Tor 70000 1 <td></td>	
Image: Note of the PS Note of the PS Note of the PS Note of the PS 128 0 PEOCITIENTS Mon 72006 Note of the PS Note of the PS <t< td=""><td></td></t<>	
Image: Constraint of the field of	
Loc Chick Int // Int // Acch Int // Acch 123 OF/LOC Int // S Mon // Socie Int // Acch Int // Acch 138 OF/LOC Int // S Wet // Socie Int // Acch Int // Acch Int // Acch 138 OF/LIF Socie Wet // Socie Int // Acch Int // Acch Int // Acch 138 OF/LIF Socie Wet // Socie Int // Acch Int // Acch Int // Acch 138 DAPF Int Socie Int // Acch 138 Sof Year Socie Int // Acch	
Law Chicket and S History History History 131 OPFECTENT R Wed 7886 Crist Comment Cri	
Low Def Lif Saksy Test (1) Wei (2805) Low Low <thlow< th=""> <thlow< th=""> Low <thlow< <="" td=""><td></td></thlow<></thlow<></thlow<>	
Line Construction Charles (Line) Charles (Line) Charles (Line) 132 DAPF1+8 Ready Thu 5/103 Image: Charles (Line) Image: Charles (Line)<	
132 DAP FL Layout notes Viet Sauda Citig Demery Layout notes 133 DAP FL Ready Thu \$703 \$1 1<	
133 Def Pir Pir Bready The Stride Import Pir Bready Import Pir Br	
134 BST F1 Tue 83104 Image 831 F1 F181304 Image 831 F1 F181304 Image 831 F1 F182004 Image 831 F2 F181004 Image 831 F2	
135 ST Aay F1 Fin P1304 Store and F1 Fin P1304 136 ST Version F1 Fin P1304 Store and F1 Fin P1304 Fin P1304 <td< td=""><td></td></td<>	
156 SST Variation F1 Fri 82004 Integrad	
137 SST Vec Test F1 F1 82704	
138 SST Callb F1 Tue 80104 Tue 80104 Tue 80104 139 SST F2 F4 9004 F4 9004 F6	
139 SST F2 F4 91004 140 SST Assy F2 Tue 91704 141 SST Variation F2 Tue 92004 142 SST Variation F2 Tue 9704 143 SST Calls F2 F191064 144 SST Calls F2 F191064 143 SST Calls F2 F191064 144 SST S Tue 92104 145 SST Assy F3 Tue 92104 146 SST Variation F3 Tue 92104 147 SST Variation F3 Tue 92104 148 SST Calls F3 F191704 149 SST Variation F3 Tue 92104 149 SST F4 F1 191704 149 SST Variation F4 Mon823004 150 SST Assy F4 Mon823004 151 SST Variation F4 Mon823004 152 SST Variation F4 Mon823004 153 SST St Variation F4 F1 191704 154 SST F4 F1 191704 155 SST Variation F4 F1 191704	
140 SST Asy F2 Tue 81704 141 SST Vibraton F2 Tue 802404 142 SST Vibraton F2 Tue 9704 143 SST Calls F2 Tue 9704 144 SST Calls F2 Fu 9704 145 SST Calls F2 Fu 9704 146 SST Asy F3 Tue 9704 147 SST Vibraton F3 Tue 92104 148 SST Vibraton F3 Tue 9204 147 SST Vibraton F3 Tue 9204 148 SST Vibraton F3 Tue 9204 149 SST Vibraton F3 Tue 9204 144 SST Vibraton F3 Tue 9204 147 SST Vibraton F3 Tue 9204 148 SST F4 Mon 82304 149 SST F4 Mon 82304 150 SST Asy F4 Mon 82304 151 SST Vibraton F4 Mon 82304 152 SST Vibraton F4 Mon 82304 153 SST Say F5 Tue 9204 154 SST Vibraton F4 Tue 9204 155 SST Vibraton F4 Fi 101004 154	
141 SST Viscitori F2 Tue 82404 142 SST Viscitori F2 Tue 9704 143 SST Calli F2 Tue 9704 144 SST Calli F2 Fir 97004 144 SST ST Calli F2 Tue 92104 145 SST Viscitori F3 Tue 92104 146 SST Viscitori F3 Tue 92104 147 SST Viscitori F3 Tue 92104 148 SST Calli F3 Tue 92104 148 SST Calli F3 Tue 92104 149 SST Viscitari F3 Tue 92104 149 SST Viscitari F4 Fri 10104 150 SST Viscitari F4 Mon 82304 151 SST Viscitari F4 Mon 82304 152 SST Viscitari F4 Tue 92804 153 SST Calli F4 Tri 10104 154 SST ST Viscitori F4 Mon 82304 155 SST Viscitori F4 Mon 82304 154 SST Viscitori F4 Mon 82304 155 SST Viscitori F4 Tue 92804 154 SST ST Assy F5 Wed 82504 155 SST Assy F5	
142 SST Venters F2 Tue 97/04 143 SST Calle F2 Fil 91/06 Image: Calle F3 Tue 92/104 144 SST F3 Tue 92/104 Image: Calle F3 Tue 92/104 Image: Calle F3 Image:	
143 SST Calls F2 F/i 910004 144 SST Assy F3 Tue 912104 Control 1000000000000000000000000000000000000	
144 SST F3 Tue 9/2104 145 SST Assy F3 Tub 8/904 Ito 8/90	
145 SST Assy F3 Thu 8/1904 146 SST Vbraton F3 Thu 8/2604 Important Comparison Important Com	
146 SST Visation F3 The 92604 147 SST Vac Test F3 Fri 91704 148 SST Calle F3 The 92104 149 SST SC Calle F3 The 92104 149 SST ST Calle F3 Fri 101704 149 SST ST Calle F3 Fri 101704 150 SST Assy F4 Mon 8/2304 151 SST Visation F4 Mon 8/2304 152 SST Visation F4 The 9/2804 153 SST SCalle F4 The 9/2804 154 SST SST Seg F4 Mon 8/2304 155 SST Visation F4 The 9/2804 154 SST SST Seg F4 The 9/2804 155 SST SST Seg F5 Web 9/264 156 SST Assy F5 Web 9/264 156 SST Assy F5 Web 9/264	
147 SST Vac Test F3 Fri 917/24 148 SST Vac Test F3 Tue 92/04 149 SST Vac Test F3 Tue 92/04 150 SST Asy F4 Mon 8/30/04 151 SST Vac Test F4 Mon 8/30/04 152 SST Vac Test F4 Tue 92/04 153 SST Callb F4 Fri 101/04 154 SST F5 Tue 92/04 155 SST Callb F4 Fri 101/04 156 SST Vac Test F4 Wed 91/04 157 SST Vac Test F4 Fri 101/04 158 SST Callb F4 Fri 101/04 159 SST ST S4 Yes 92/04 154 SST S7 S Yes 92/04 155 SST Vac Test F4 Fri 101/04 154 SST F5 Yes 92/04 155 SST Asy F5 Wed 91/04 156 SST Vac Test F4 Yes 92/04	
148 SST Callb F3 Tue 921/04 149 SST F4 Fri 10/104 149 SST F4 Fri 10/104 150 SST Assy F4 Mon 8/3004 151 SST Vbraton F4 Mon 8/3004 152 SST Vbraton F4 Tue 9/28/04 153 SST Callb F4 Tue 9/28/04 154 SST Callb F4 Fri 10/104 155 SST F4 Tue 9/28/04 156 SST Vaeltor F2 Wed 9/104	
149 SST F4 Fri 101/04 150 SST Assy F4 Mon 8/23/04 Image: SST Assy F4 Image: SST Assy	
150 SST Assy F4 Mon 8/2304 151 SST Vibration F4 Mon 8/2304 152 SST Vibration F4 Tub 9/2804 153 SST Callb F4 Tub 9/2804 154 SST Callb F4 Fit 10/1204 155 SST Callb F4 Fit 10/1204 156 SST Assy F5 Wed 9/2504 156 SST Vibration F2 Wed 9/104	
151 SST Visition F4 Mon 8/2004 152 SST Visition F4 Tue 9/28/04 153 SST Calls F4 Tue 9/28/04 154 SST Calls F4 Fit 10/104 155 SST Calls F4 Tue 10/204 156 SST	
152 SST Vac Test F4 Tue 9/28/04 153 SST Calls F4 Fit 10/1/04 154 SST Calls F4 Fit 10/1/04 155 SST Assy F5 Wed 8/25/04 156 SST Vaciation F2 Wed 9/1/04	
153 SST Callb F4 Fri 10/10/4 154 SST F5 Tue 10/12/04 155 SST Assy F5 Wed 92/504 156 SST Version F2 Wed 92/504	
154 SST F5 Tue 10/12/04 155 SST Assy F5 Wed 8/25/04 156 SST Vibration F2 Wed 9/10/4 156 SST Vibration F2 Wed 9/10/4	
155 SST Assy P5 Wed 8/25/04 -Robert Lee 156 SST Vibration F2 Wed 9/104	
156 SST Vibration F2 Wed 9/104	
157 SST Vac Test F5 Fri 10/8/04	
158 SST Callb F5 Tue 10/1204	
159 SST F6 Fri 10/2204	
160 SST Assy F6 Fri 8/27/04	
161 SST Vibration F2 Fri 93/04	
162 SST Vsc Test F6 Tue 10/19/04	
163 SST Callb F6 Fri 10/2204	
10:20 AM Mon 4/19/04 Page 3	thm_sst.mpp